Using Soft Constraints in Joint Inference for Clinical Concept Recognition

This paper introduces IQPs (Integer Quadratic Programs) as a way to model joint inference for the task of concept recognition in clinical domain. IQPs make it possible to easily incorporate soft constraints in the optimization framework and still support exact global inference. We show that soft constraints give statistically significant performance improvements when compared to hard constraints.

[1]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[2]  Alan R. Aronson,et al.  An overview of MetaMap: historical perspective and recent advances , 2010, J. Am. Medical Informatics Assoc..

[3]  Mirella Lapata,et al.  Aggregation via Set Partitioning for Natural Language Generation , 2006, NAACL.

[4]  Min Li,et al.  A knowledge discovery and reuse pipeline for information extraction in clinical notes , 2011, J. Am. Medical Informatics Assoc..

[5]  Philipp Koehn,et al.  Statistical Significance Tests for Machine Translation Evaluation , 2004, EMNLP.

[6]  Ming-Wei Chang,et al.  Guiding Semi-Supervision with Constraint-Driven Learning , 2007, ACL.

[7]  Sanda M. Harabagiu,et al.  A flexible framework for deriving assertions from electronic medical records , 2011, J. Am. Medical Informatics Assoc..

[8]  Andrew McCallum,et al.  Maximum Entropy Markov Models for Information Extraction and Segmentation , 2000, ICML.

[9]  Ben Taskar,et al.  Posterior Regularization for Structured Latent Variable Models , 2010, J. Mach. Learn. Res..

[10]  Pierre Zweigenbaum,et al.  Hybrid methods for improving information access in clinical documents: concept, assertion, and relation identification , 2011, J. Am. Medical Informatics Assoc..

[11]  Ming-Wei Chang,et al.  Structured learning with constrained conditional models , 2012, Machine Learning.

[12]  Dan Roth,et al.  The Importance of Syntactic Parsing and Inference in Semantic Role Labeling , 2008, CL.

[13]  Dan Roth,et al.  End-to-End Coreference Resolution for Clinical Narratives , 2013, IJCAI.

[14]  Gideon S. Mann,et al.  Simple, robust, scalable semi-supervised learning via expectation regularization , 2007, ICML '07.

[15]  D. Roth 1 Global Inference for Entity and Relation Identification via a Linear Programming Formulation , 2007 .

[16]  Ming-Wei Chang,et al.  Structured prediction with indirect supervision , 2011, MLSLP.

[17]  Michael Strube,et al.  Beyond the Pipeline: Discrete Optimization in NLP , 2005, CoNLL.

[18]  Shuying Shen,et al.  2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text , 2011, J. Am. Medical Informatics Assoc..

[19]  Dan Roth,et al.  Semantic Role Labeling Via Integer Linear Programming Inference , 2004, COLING.

[20]  Pascal Denis,et al.  Joint Determination of Anaphoricity and Coreference Resolution using Integer Programming , 2007, NAACL.

[21]  Hua Xu,et al.  A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries , 2011, J. Am. Medical Informatics Assoc..

[22]  Joel D. Martin,et al.  Machine-learned solutions for three stages of clinical information extraction: the state of the art at i2b2 2010 , 2011, J. Am. Medical Informatics Assoc..

[23]  Gideon S. Mann,et al.  Generalized Expectation Criteria for Semi-Supervised Learning of Conditional Random Fields , 2008, ACL.

[24]  Regina Barzilay,et al.  Multi-Event Extraction Guided by Global Constraints , 2012, NAACL.

[25]  Dan Roth,et al.  Inference Protocols for Coreference Resolution , 2011, CoNLL Shared Task.

[26]  Regina Barzilay,et al.  Inducing Temporal Graphs , 2006, EMNLP.

[27]  Sebastian Riedel,et al.  Incremental Integer Linear Programming for Non-projective Dependency Parsing , 2006, EMNLP.

[28]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[29]  Hongfang Liu,et al.  Using machine learning for concept extraction on clinical documents from multiple data sources , 2011, J. Am. Medical Informatics Assoc..

[30]  J. Clarke,et al.  Global inference for sentence compression : an integer linear programming approach , 2008, J. Artif. Intell. Res..

[31]  Mirella Lapata,et al.  Modelling Compression with Discourse Constraints , 2007, EMNLP.

[32]  Dan Roth,et al.  Integer linear programming inference for conditional random fields , 2005, ICML.

[33]  Christopher D. Manning,et al.  Incorporating Non-local Information into Information Extraction Systems by Gibbs Sampling , 2005, ACL.

[34]  L. Getoor,et al.  1 Global Inference for Entity and Relation Identification via a Linear Programming Formulation , 2007 .

[35]  Dan Roth,et al.  A Linear Programming Formulation for Global Inference in Natural Language Tasks , 2004, CoNLL.

[36]  Jun'ichi Tsujii,et al.  Feature engineering combined with machine learning and rule-based methods for structured information extraction from narrative clinical discharge summaries , 2012, J. Am. Medical Informatics Assoc..