Beta‐lactam antibiotics: from antibiosis to resistance and bacteriology

Kong K‐F, Schneper L, Mathee K. Beta‐lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS 2010; 118: 1–36.

[1]  George A. Jacoby,et al.  AmpC β-Lactamases , 2009, Clinical Microbiology Reviews.

[2]  Raymond Lo,et al.  Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes , 2008, Nucleic Acids Res..

[3]  Peter D. Karp,et al.  EcoCyc: A comprehensive view of Escherichia coli biology , 2008, Nucleic Acids Res..

[4]  W. Vollmer,et al.  Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. , 2008, Biochimica et biophysica acta.

[5]  E. Sauvage,et al.  Crystal structures of complexes of bacterial DD-peptidases with peptidoglycan-mimetic ligands: the substrate specificity puzzle. , 2008, Journal of molecular biology.

[6]  A. Oliver,et al.  Benefit of Having Multiple ampD Genes for Acquiring β-Lactam Resistance without Losing Fitness and Virulence in Pseudomonas aeruginosa , 2008, Antimicrobial Agents and Chemotherapy.

[7]  D. Nelson,et al.  Physiological functions of D-alanine carboxypeptidases in Escherichia coli. , 2008, Trends in microbiology.

[8]  James T. Park,et al.  How Bacteria Consume Their Own Exoskeletons (Turnover and Recycling of Cell Wall Peptidoglycan) , 2008, Microbiology and Molecular Biology Reviews.

[9]  T. Vernet,et al.  Penicillin-binding proteins and beta-lactam resistance. , 2008, FEMS microbiology reviews.

[10]  Paulette Charlier,et al.  The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. , 2008, FEMS microbiology reviews.

[11]  S. Foster,et al.  Bacterial peptidoglycan (murein) hydrolases. , 2008, FEMS microbiology reviews.

[12]  A. Oliver,et al.  Stepwise Upregulation of the Pseudomonas aeruginosa Chromosomal Cephalosporinase Conferring High-Level β-Lactam Resistance Involves Three AmpD Homologues , 2006, Antimicrobial Agents and Chemotherapy.

[13]  C. Koh,et al.  Pseudomonas aeruginosa AmpR Is a Global Transcriptional Factor That Regulates Expression of AmpC and PoxB β-Lactamases, Proteases, Quorum Sensing, and Other Virulence Factors , 2005, Antimicrobial Agents and Chemotherapy.

[14]  K. Mathee,et al.  Characterization of poxB, a chromosomal-encoded Pseudomonas aeruginosa oxacillinase. , 2005, Gene.

[15]  Walter Sneader,et al.  Drug Discovery (The History) , 2005 .

[16]  K. Yuen,et al.  Cloning and Characterization of a Chromosomal Class C β-Lactamase and Its Regulatory Gene in Laribacter hongkongensis , 2005, Antimicrobial Agents and Chemotherapy.

[17]  R. Brasseur,et al.  Membrane Topology of the Escherichia coli AmpG Permease Required for Recycling of Cell Wall Anhydromuropeptides and AmpC β-Lactamase Induction , 2005, Antimicrobial Agents and Chemotherapy.

[18]  Dean Cheng,et al.  Pseudomonas aeruginosa Genome Database and PseudoCAP: facilitating community-based, continually updated, genome annotation , 2004, Nucleic Acids Res..

[19]  P. Nordmann,et al.  Biochemical Characterization of the Naturally Occurring Oxacillinase OXA-50 of Pseudomonas aeruginosa , 2004, Antimicrobial Agents and Chemotherapy.

[20]  H. H. Martin,et al.  Murein and lipopolysaccharide biosynthesis in synchronized cells of Escherichia coli K 12 and the effect of penicillin G, mecillinam and nalidixic acid , 1982, Archives of Microbiology.

[21]  T. Sawai,et al.  Cloning and expression of the gene(s) for cephalosporinase production of Citrobacter freundii , 2004, Molecular and General Genetics MGG.

[22]  Peter Karp,et al.  PseudoCyc, A Pathway-Genome Database for Pseudomonas aeruginosa , 2003, Journal of Molecular Microbiology and Biotechnology.

[23]  B. Abdalhamid,et al.  Analyses of ampC gene expression in Serratia marcescens reveal new regulatory properties. , 2003, The Journal of antimicrobial chemotherapy.

[24]  James T. Park,et al.  Substrate Specificity of the AmpG Permease Required for Recycling of Cell Wall Anhydro-Muropeptides , 2002, Journal of bacteriology.

[25]  M. Hentzer,et al.  Constitutive High Expression of Chromosomal β-Lactamase in Pseudomonas aeruginosa Caused by a New Insertion Sequence (IS1669) Located in ampD , 2002, Antimicrobial Agents and Chemotherapy.

[26]  P. Nordmann,et al.  A nosocomial outbreak of Pseudomonas aeruginosa isolates expressing the extended-spectrum beta-lactamase GES-2 in South Africa. , 2002, The Journal of antimicrobial chemotherapy.

[27]  J. Frère,et al.  Crystal structures of the Bacillus licheniformis BS3 class A beta-lactamase and of the acyl-enzyme adduct formed with cefoxitin. , 2002, Biochemistry.

[28]  T. Palzkill,et al.  Molecular analysis of beta-lactamase structure and function. , 2002, International journal of medical microbiology : IJMM.

[29]  C. Bizet,et al.  Molecular Characterization of Chromosomal Class C β-Lactamase and Its Regulatory Gene in Ochrobactrum anthropi , 2001, Antimicrobial Agents and Chemotherapy.

[30]  J. van Heijenoort Formation of the glycan chains in the synthesis of bacterial peptidoglycan. , 2001, Glycobiology.

[31]  A. Fleming,et al.  Classics in infectious diseases: on the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae by Alexander Fleming, Reprinted from the British Journal of Experimental Pathology 10:226-236, 1929. , 1980, Reviews of infectious diseases.

[32]  M. Templin,et al.  Characterization of a β-N-acetylglucosaminidase ofEscherichia coli and Elucidation of Its Role in Muropeptide Recycling and β-Lactamase Induction* , 2000, The Journal of Biological Chemistry.

[33]  James T. Park,et al.  Molecular Characterization of the β-N-Acetylglucosaminidase of Escherichia coliand Its Role in Cell Wall Recycling , 2000, Journal of bacteriology.

[34]  A. Huletsky,et al.  Inactivation of the ampD Gene inPseudomonas aeruginosa Leads to Moderate-Basal-Level and Hyperinducible AmpC β-Lactamase Expression , 2000, Antimicrobial Agents and Chemotherapy.

[35]  N. Woodford,et al.  Outbreak of Infections Caused by Pseudomonas aeruginosa Producing VIM-1 Carbapenemase in Greece , 2000, Journal of Clinical Microbiology.

[36]  M. Wainwright André Gratia (1893–1950): Forgotten Pioneer of Research into Antimicrobial Agents , 2000, Journal of medical biography.

[37]  M. Templin,et al.  Characterization of a beta -N-acetylglucosaminidase of Escherichia coli and elucidation of its role in muropeptide recycling and beta -lactamase induction. , 2000, The Journal of biological chemistry.

[38]  J. Höltje,et al.  Cloning and Characterization of PBP 1C, a Third Member of the Multimodular Class A Penicillin-binding Proteins of Escherichia coli * , 1999, The Journal of Biological Chemistry.

[39]  N. Høiby,et al.  Terminal truncations in amp C beta-lactamase from a clinical isolate of Pseudomonas aeruginosa. , 1999, European journal of biochemistry.

[40]  G. Cornaglia,et al.  Cloning and Characterization of blaVIM, a New Integron-Borne Metallo-β-Lactamase Gene from a Pseudomonas aeruginosa Clinical Isolate , 1999, Antimicrobial Agents and Chemotherapy.

[41]  P. Nordmann,et al.  An SHV-Derived Extended-Spectrum β-Lactamase in Pseudomonas aeruginosa , 1999, Antimicrobial Agents and Chemotherapy.

[42]  P. Nordmann,et al.  Cloning, Sequence Analyses, Expression, and Distribution of ampC-ampR from Morganella morganii Clinical Isolates , 1999, Antimicrobial Agents and Chemotherapy.

[43]  R. Pinner,et al.  Trends in infectious disease mortality in the United States during the 20th century. , 1999, JAMA.

[44]  M Matheson,et al.  Gram stain. , 1999, Community eye health.

[45]  P. Nordmann,et al.  An SHV-derived extended-spectrum beta-lactamase in Pseudomonas aeruginosa. , 1999, Antimicrobial agents and chemotherapy.

[46]  A. Huletsky,et al.  An ampD Gene in Pseudomonas aeruginosa Encodes a Negative Regulator of AmpC β-Lactamase Expression , 1998, Antimicrobial Agents and Chemotherapy.

[47]  J. Ghuysen,et al.  Multimodular Penicillin-Binding Proteins: An Enigmatic Family of Orthologs and Paralogs , 1998, Microbiology and Molecular Biology Reviews.

[48]  D. Bone Chance of a lifetime. , 1998, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[49]  D. F. Sahm,et al.  AmpC beta-lactamases. , 1998 .

[50]  J. Goldberg,et al.  Contribution of proteases and LasR to the virulence of Pseudomonas aeruginosa during corneal infections , 1997, Infection and immunity.

[51]  N. Høiby,et al.  Pseudomonas aeruginosa isolates from patients with cystic fibrosis have different beta-lactamase expression phenotypes but are homogeneous in the ampC-ampR genetic region , 1997, Antimicrobial agents and chemotherapy.

[52]  J. Frère,et al.  Cytosolic Intermediates for Cell Wall Biosynthesis and Degradation Control Inducible β-Lactam Resistance in Gram-Negative Bacteria , 1997, Cell.

[53]  J. W. Henderson The yellow brick road to penicillin: a story of serendipity. , 1997, Mayo Clinic proceedings.

[54]  J. Ayala,et al.  dacD, an Escherichia coli gene encoding a novel penicillin-binding protein (PBP6b) with DD-carboxypeptidase activity , 1996, Journal of bacteriology.

[55]  S. Ichiyama,et al.  PCR detection of metallo-beta-lactamase gene (blaIMP) in gram-negative rods resistant to broad-spectrum beta-lactams , 1996, Journal of clinical microbiology.

[56]  John F. Kennedy,et al.  Bacterial cell wall , 1996 .

[57]  D. Greenwood Tarnished gold: sixty years of antimicrobial drug use and misuse. , 1995, Journal of medical microbiology.

[58]  G. Jacoby,et al.  A functional classification scheme for beta-lactamases and its correlation with molecular structure , 1995, Antimicrobial agents and chemotherapy.

[59]  K. Young,et al.  Identification and cloning of the gene encoding penicillin-binding protein 7 of Escherichia coli , 1995, Journal of bacteriology.

[60]  J. Frère,et al.  AmpD, essential for both β‐lactamase regulation and cell wall recycling, is a novel cytosolic N‐acetylmuramyl‐L‐alanine amidase , 1995, Molecular microbiology.

[61]  S. Normark,et al.  Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta‐lactamase induction. , 1994, The EMBO journal.

[62]  N. Høiby,et al.  Antibodies against chromosomal beta-lactamase , 1994, Antimicrobial Agents and Chemotherapy.

[63]  J. Höltje,et al.  The negative regulator of beta-lactamase induction AmpD is a N-acetyl-anhydromuramyl-L-alanine amidase. , 1994, FEMS microbiology letters.

[64]  T. Romeis,et al.  Penicillin-binding protein 7/8 of Escherichia coli is a DD-endopeptidase. , 1994, European journal of biochemistry.

[65]  J. Travis,et al.  Reviving the antibiotic miracle? , 1994, Science.

[66]  E. Culotta Funding crunch hobbles antibiotic resistance research. , 1994, Science.

[67]  K. Young,et al.  Artifactual processing of penicillin-binding proteins 7 and 1b by the OmpT protease of Escherichia coli , 1994, Journal of bacteriology.

[68]  P. Bouloc,et al.  Penicillin-binding protein 2 inactivation in Escherichia coli results in cell division inhibition, which is relieved by FtsZ overexpression , 1993, Journal of bacteriology.

[69]  H. H. Martin,et al.  AmpG, a signal transducer in chromosomal β‐lactamase induction , 1993 .

[70]  S. Busby,et al.  Investigation of the Pseudomonas aeruginosa ampR gene and its role at the chromosomal ampC beta-lactamase promoter. , 1993, FEMS microbiology letters.

[71]  R. Proenca,et al.  The Pseudomonas cepacia 249 chromosomal penicillinase is a member of the AmpC family of chromosomal beta-lactamases , 1993, Antimicrobial Agents and Chemotherapy.

[72]  S. Lindquist,et al.  Sequences of wild-type and mutant ampD genes of Citrobacter freundii and Enterobacter cloacae , 1993, Antimicrobial Agents and Chemotherapy.

[73]  H. H. Martin,et al.  AmpG, a signal transducer in chromosomal beta-lactamase induction. , 1993, Molecular microbiology.

[74]  M. Schell Molecular biology of the LysR family of transcriptional regulators. , 1993, Annual review of microbiology.

[75]  Steffee Ch Alexander Fleming and penicillin. The chance of a lifetime , 1992 .

[76]  R. Levesque,et al.  Phylogeny of LCR‐1 and OXA‐5 with class A and class D β‐lactamases , 1992, Molecular microbiology.

[77]  M. Francia,et al.  Nucleotide sequence of the ampC-ampR region from the chromosome of Yersinia enterocolitica , 1992, Antimicrobial Agents and Chemotherapy.

[78]  P. Bouloc,et al.  Penicillin binding protein 2 is dispensable in Escherichia coli when ppGpp synthesis is induced. , 1992, The EMBO journal.

[79]  C. Steffee Alexander Fleming and penicillin. The chance of a lifetime? , 1992, North Carolina medical journal.

[80]  N. Heatley,et al.  Further observations on penicillin. 1941. , 1992, European journal of clinical pharmacology.

[81]  M. Gambello,et al.  Pseudomonas aeruginosa LasA: a second elastase under the transcriptional control of lasR , 1991, Molecular microbiology.

[82]  S. Normark,et al.  Purification and mutant analysis of Citrobacter freundii AmpR, the regulator for chromosomal AmpC β‐lactamase , 1991, Molecular microbiology.

[83]  J. Lachapelle,et al.  Characterization of the blaCARB-3 gene encoding the carbenicillinase-3 beta-lactamase of Pseudomonas aeruginosa. , 1991, Gene.

[84]  W. Keck,et al.  Penicillin‐binding protein 4 of Escherichia coli: molecular cloning of the dacB gene, controlled overexpression, and alterations in murein composition , 1991, Molecular microbiology.

[85]  J. Höltje,et al.  The murein hydrolases of Escherichia coli: properties, functions and impact on the course of infections in vivo. , 1991, Journal of general microbiology.

[86]  F. Malouin,et al.  Influence of growth media on Escherichia coli cell composition and ceftazidime susceptibility , 1991, Antimicrobial Agents and Chemotherapy.

[87]  E. S. Moland,et al.  Altered phenotypes associated with ampD mutations in Enterobacter cloacae , 1991, Antimicrobial Agents and Chemotherapy.

[88]  S. Lindquist,et al.  Coordinate regulation of beta-lactamase induction and peptidoglycan composition by the amp operon. , 1991, Science.

[89]  S. Mitsuhashi,et al.  Transferable imipenem resistance in Pseudomonas aeruginosa , 1991, Antimicrobial Agents and Chemotherapy.

[90]  D. Livermore Mechanisms of resistance to beta-lactam antibiotics. , 1991, Scandinavian journal of infectious diseases. Supplementum.

[91]  J. Ghuysen,et al.  Serine beta-lactamases and penicillin-binding proteins. , 1991, Annual review of microbiology.

[92]  S. Busby,et al.  Cloning, sequencing and analysis of the structural gene and regulatory region of the Pseudomonas aeruginosa chromosomal ampC beta-lactamase. , 1990, The Biochemical journal.

[93]  C. Gualerzi,et al.  Initiation of mRNA translation in prokaryotes. , 1990, Biochemistry.

[94]  M. Boissinot,et al.  Nucleotide sequence of the PSE-4 carbenicillinase gene and correlations with the Staphylococcus aureus PC1 beta-lactamase crystal structure. , 1990, The Journal of biological chemistry.

[95]  J. Frère,et al.  The diversity of the catalytic properties of class A beta-lactamases. , 1990, The Biochemical journal.

[96]  C. Sanders,et al.  ampG is essential for high-level expression of AmpC beta-lactamase in Enterobacter cloacae , 1989, Antimicrobial Agents and Chemotherapy.

[97]  S. Cole,et al.  Regulation of enterobacterial cephalosporinase production: the role of a membrane‐bound sensory transducer , 1989, Molecular microbiology.

[98]  M. Galleni,et al.  Signalling proteins in enterobacterial AmpC β‐lactamase regulation , 1989 .

[99]  S. Lindquist,et al.  Binding of the Citrobacter freundii AmpR regulator to a single DNA site provides both autoregulation and activation of the inducible ampC beta-lactamase gene , 1989, Journal of bacteriology.

[100]  P. Bouloc,et al.  Penicillin-binding protein 2 is essential in wild-type Escherichia coli but not in lov or cya mutants , 1989, Journal of bacteriology.

[101]  M. Pommepuy,et al.  Effect of carbonyl cyanide m-chlorophenylhydrazone on Escherichia coli halotolerance , 1989, Applied and environmental microbiology.

[102]  S. Lindquist,et al.  Signalling proteins in enterobacterial AmpC beta-lactamase regulation. , 1989, Molecular microbiology.

[103]  R. Goering,et al.  Heterogeneity in ampR-ampC gene interaction in Enterobacter cloacae. , 1988, Reviews of infectious diseases.

[104]  B. Spratt,et al.  Penicillin-binding proteins of gram-negative bacteria. , 1988, Reviews of infectious diseases.

[105]  R. Lévesque,et al.  Cloning and expression of the imipenem-hydrolyzing beta-lactamase operon from Pseudomonas maltophilia in Escherichia coli , 1988, Antimicrobial Agents and Chemotherapy.

[106]  J. Frère,et al.  Sequence and comparative analysis of three Enterobacter cloacae ampC beta-lactamase genes and their products. , 1988, The Biochemical journal.

[107]  S. Busby,et al.  Functional analysis of different sequence elements in the Escherichia coli galactose operon P 2 promoter , 1988, Molecular microbiology.

[108]  B. Spratt,et al.  Nucleotide sequences of the penicillin-binding protein 5 and 6 genes of Escherichia coli. , 1988, Nucleic acids research.

[109]  M. Rosenberg,et al.  Constitutive function of a positively regulated promoter reveals new sequences essential for activity. , 1987, The Journal of biological chemistry.

[110]  S. Lindquist,et al.  Inactivation of the ampD gene causes semiconstitutive overproduction of the inducible Citrobacter freundii beta-lactamase , 1987, Journal of bacteriology.

[111]  S. Cole,et al.  Molecular genetic analysis of cephalosporinase production and its role in beta-lactam resistance in clinical isolates of Enterobacter cloacae , 1987, Antimicrobial Agents and Chemotherapy.

[112]  S. Normark,et al.  Common mechanism of ampC beta-lactamase induction in enterobacteria: regulation of the cloned Enterobacter cloacae P99 beta-lactamase gene , 1987, Journal of bacteriology.

[113]  C. Sanders Chromosomal cephalosporinases responsible for multiple resistance to newer beta-lactam antibiotics. , 1987, Annual review of microbiology.

[114]  S T Cole,et al.  Inducible cephalosporinase production in clinical isolates of Enterobacter cloacae is controlled by a regulatory gene that has been deleted from Escherichia coli. , 1986, The EMBO journal.

[115]  R. Goering,et al.  Evidence for multiple forms of type I chromosomal beta-lactamase in Pseudomonas aeruginosa , 1986, Antimicrobial Agents and Chemotherapy.

[116]  S. Normark,et al.  Contribution of Chromosomal β-Lactamases to β-Lactam Resistance in Enterobacteria , 1986 .

[117]  B. Spratt,et al.  Peptidoglycan synthetic activities in membranes of Escherichia coli caused by overproduction of penicillin-binding protein 2 and rodA protein. , 1986, The Journal of biological chemistry.

[118]  Trish Berglund,et al.  Changing patterns of infectious disease , 1986 .

[119]  S. Queener,et al.  Beta-lactam antibiotics for clinical use , 1986 .

[120]  S. Normark,et al.  Contribution of chromosomal beta-lactamases to beta-lactam resistance in enterobacteria. , 1986, Reviews of infectious diseases.

[121]  E. J. de la Rosa,et al.  Penicillin binding proteins: role in initiation of murein synthesis in Escherichia coli. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[122]  S. Normark,et al.  Regulatory components in Citrobacter freundii ampC beta-lactamase induction. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[123]  G. Jacoby,et al.  Five novel plasmid-determined beta-lactamases , 1985, Antimicrobial Agents and Chemotherapy.

[124]  R. Goering,et al.  Role of beta-lactamases and outer membrane proteins in multiple beta-lactam resistance of Enterobacter cloacae , 1985, Antimicrobial Agents and Chemotherapy.

[125]  C. Sanders,et al.  Microbial resistance to newer generation beta-lactam antibiotics: clinical and laboratory implications. , 1985, The Journal of infectious diseases.

[126]  E. Kellenberger,et al.  Periplasmic Gel: New Concept Resulting from the Reinvestigation of Bacterial Cell Envelope Ultrastructure by New Methods , 1985, Journal of bacteriology.

[127]  S. Tamaki,et al.  Functional biosynthesis of cell wall peptidoglycan by polymorphic bifunctional polypeptides. Penicillin-binding protein 1Bs of Escherichia coli with activities of transglycosylase and transpeptidase. , 1984, The Journal of biological chemistry.

[128]  E. Kellenberger,et al.  Periplasmic gel: new concept resulting from the reinvestigation of bacterial cell envelope ultrastructure by new methods , 1984 .

[129]  S. Normark,et al.  ampC beta-lactamase hyperproduction in Escherichia coli: natural ampicillin resistance generated by horizontal chromosomal DNA transfer from Shigella. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[130]  S. Normark,et al.  Comparison of the overlapping frd and ampC operons of Escherichia coli with the corresponding DNA sequences in other gram-negative bacteria , 1983, Journal of bacteriology.

[131]  B. Wiedemann,et al.  Chromosomal beta-lactamases of Enterobacter cloacae are responsible for resistance to third-generation cephalosporins , 1983, Antimicrobial Agents and Chemotherapy.

[132]  S. Normark,et al.  Insertion of IS2 creates a novel ampC promoter in Escherichia coli , 1983, Cell.

[133]  T. Gootz,et al.  Characterization of beta-lactamase induction in Enterobacter cloacae , 1983, Antimicrobial Agents and Chemotherapy.

[134]  K. Amako,et al.  Structure of the Envelope of Escherichia coli Observed by the Rapid‐Freezing and Substitution Fixation Method , 1983, Microbiology and immunology.

[135]  B. Spratt,et al.  Deletion of the Penicillin-Binding Protein 6 Gene of Escherichia coli , 1982, Journal of bacteriology.

[136]  T. Grundström,et al.  Sequence elements determining ampC promoter strength in E. coli. , 1982, The EMBO journal.

[137]  C. Buchanan,et al.  Synthesis of penicillin-binding protein 6 by stationary-phase Escherichia coli , 1982, Journal of bacteriology.

[138]  J. S. Wells,et al.  EM5400, a family of monobactam antibiotics produced by Agrobacterium radiobacter. I. Taxonomy, fermentation and biological properties. , 1982, The Journal of antibiotics.

[139]  R. Hare New light on the history of penicillin. , 1982, Medical History.

[140]  U. Schwarz,et al.  Heterogeneity of newly inserted and preexisting murein in the sacculus of Escherichia coli. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[141]  T. Grundström,et al.  ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of beta-lactamases of the penicillinase type. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[142]  S. Normark,et al.  Recombination between short DNA homologies causes tandem duplication , 1981, Nature.

[143]  T. Grundström,et al.  The E. coli β-lactamase attenuator mediates growth rate-dependent regulation , 1981, Nature.

[144]  M. Muroi,et al.  Sulfazecin and isosulfazecin, novel β-lactam antibiotics of bacterial origin , 1981, Nature.

[145]  James T. Park,et al.  Evidence for involvement of penicillin-binding protein 3 in murein synthesis during septation but not during cell elongation , 1981, Journal of bacteriology.

[146]  James T. Park,et al.  Effects of furazlocillin, a beta-lactam antibiotic which binds selectively to penicillin-binding protein 3, on Escherichia coli mutants deficient in other penicillin-binding proteins , 1981, Journal of bacteriology.

[147]  T. Grundström,et al.  The E. coli beta-lactamase attenuator mediates growth rate-dependent regulation. , 1981, Nature.

[148]  J. S. Wells,et al.  Monocyclic beta-lactam antibiotics produced by bacteria. , 1981, Nature.

[149]  M. Muroi,et al.  Sulfazecin and isosulfazecin, novel beta-lactam antibiotics of bacterial origin. , 1981, Nature.

[150]  J. Strominger,et al.  Purification and properties of penicillin-binding proteins 5 and 6 from Escherichia coli membranes. , 1980, The Journal of biological chemistry.

[151]  B. Spratt,et al.  Deletion of the penicillin-binding protein 5 gene of Escherichia coli , 1980, Journal of bacteriology.

[152]  B. Spratt,et al.  Defective and plaque-forming lambda transducing bacteriophage carrying penicillin-binding protein-cell shape genes: genetic and physical mapping and identification of gene products from the lip-dacA-rodA-pbpA-leuS region of the Escherichia coli chromosome , 1980, Journal of bacteriology.

[153]  T. Tamura,et al.  On the process of cellular division in Escherichia coli: isolation and characterization of penicillin-binding proteins 1a, 1b, and 3. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[154]  N. Georgopapadakou,et al.  Penicillin-binding proteins in bacteria , 1980, Antimicrobial Agents and Chemotherapy.

[155]  R. Ambler,et al.  The structure of beta-lactamases. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[156]  S. Normark,et al.  In vivo regulation of chromosomal beta-lactamase in Escherichia coli , 1979, Journal of bacteriology.

[157]  S. Selwyn Pioneer work on the 'penicillin phenomenon', 1870-1876. , 1979, The Journal of antimicrobial chemotherapy.

[158]  J. Strominger,et al.  Mutational evidence for identity of penicillin-binding protein 5 in Escherichia coli with the major D-alanine carboxypeptidase IA activity , 1979, Journal of bacteriology.

[159]  E. Chain The early years of the penicillin discovery , 1979 .

[160]  J. Strominger,et al.  Morphology of an Escherichia coli mutant with a temperature-dependent round cell shape , 1978, Journal of bacteriology.

[161]  Y. Hirota,et al.  On the process of cellular division in Escherichia coli: a series of mutants of E. coli altered in the penicillin-binding proteins. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[162]  J. Strominger,et al.  Mapping of the mecillinam-resistant, round morphological mutants of Escherichia coli , 1978, Journal of bacteriology.

[163]  S. Tamaki,et al.  Thermosensitive mutation in Escherichia coli simultaneously causing defects in penicillin-binding protein-1Bs and in enzyme activity for peptidoglycan synthesis in vitro. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[164]  B. Spratt,et al.  Mutants of Escherichia coli which lack a component of penicillin‐binding protein 1 are viable , 1977, FEBS letters.

[165]  J. Strominger,et al.  Simultaneous deletion of D-alanine carboxypeptidase IB-C and penicillin-binding component IV in a mutant of Escherichia coli K12. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[166]  Y. Hirota,et al.  Mutants of Escherichia coli lacking in highly penicillin-sensitive D-alanine carboxypeptidase activity. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[167]  B. Spratt Temperature-Sensitive Cell Division Mutants of Escherichia coli with Thermolabile Penicillin-Binding Proteins , 1977, Journal of bacteriology.

[168]  J. Strominger,et al.  Identification of the Major Penicillin-Binding Proteins of Escherichia coli as d-Alanine Carboxypeptidase IA , 1976, Journal of bacteriology.

[169]  R. Sykes,et al.  The -lactamases of Gram-negative bacteria and their rle in resistance to -lactam antibiotics , 1976 .

[170]  J. Strominger,et al.  Purification to homogeneity and properties of two D-alanine carboxypeptidases I From Escherichia coli. , 1976, The Journal of biological chemistry.

[171]  R. Sykes,et al.  The beta-lactamases of gram-negative bacteria and their role in resistance to beta-lactam antibiotics. , 1976, The Journal of antimicrobial chemotherapy.

[172]  J. van Heijenoort,et al.  Envelope-bound N-acetylmuramyl-L-alanine amidase of Escherichia coli K 12. Purification and properties of the enzyme. , 1975, European journal of biochemistry.

[173]  B. Spratt Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[174]  B. Spratt,et al.  Penicillin-binding proteins and cell shape in E. coli , 1975, Nature.

[175]  J. Strominger,et al.  Mechanism of Action and Development of Resistance to a New Amidino Penicillin , 1974, Journal of bacteriology.

[176]  K. Imahori,et al.  Characterization and Genetic Analysis of a Mutant of Escherichia coli K-12 with Rounded Morphology , 1973, Journal of bacteriology.

[177]  L. Burman,et al.  FL-1060: a new penicillin with a unique mode of action. , 1973, Biochemical and biophysical research communications.

[178]  R. Sykes,et al.  The β-Lactamases of Gram-Negative Bacteria and their Possible Physiological Role , 1973 .

[179]  R. Sykes,et al.  The beta-lactamases of gram-negative bacteria and their possible physiological role. , 1973, Advances in microbial physiology.

[180]  J. Strominger,et al.  Multiple penicillin-binding components in Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, and Escherichia coli. , 1972, The Journal of biological chemistry.

[181]  J. W. Dale,et al.  A direct comparison of two unusual R-factor-mediated -lactamases. , 1972, The Biochemical journal.

[182]  Ramanathan Nagarajan,et al.  Beta-lactam antibiotics from Streptomyces. , 1971, Journal of the American Chemical Society.

[183]  M. Finland,et al.  Changing ecology of bacterial infections as related to antibacterial therapy. , 1970, The Journal of infectious diseases.

[184]  S. Normark Mutation in Escherichia coli K-12 Mediating Spherelike Envelopes and Changed Tolerance to Ultraviolet Irradiation and Some Antibiotics , 1969, Journal of bacteriology.

[185]  J. Strominger,et al.  Biosynthesis of the peptidoglycan of bacterial cell walls. 8. Peptidoglycan transpeptidase and D-alanine carboxypeptidase: penicillin-sensitive enzymatic reaction in strains of Escherichia coli. , 1968, The Journal of biological chemistry.

[186]  J. Strominger,et al.  Biosynthesis of the peptidoglycan of bacterial cell walls. XII. Inhibition of cross-linking by penicillins and cephalosporins: studies in Staphylococcus aureus in vivo. , 1968, The Journal of biological chemistry.

[187]  J. Strominger,et al.  Biosynthesis of the peptidoglycan of bacterial cell walls. XIV. Purification and properties of two D-alanine carboxypeptidases from Escherichia coli. , 1968, The Journal of biological chemistry.

[188]  J. Strominger,et al.  Biosynthesis of the peptidoglycan of bacterial cell walls. XI. Formation of the isoglutamine amide group in the cell walls of Staphylococcus aureus. , 1968, The Journal of biological chemistry.

[189]  T. Hennessey Inducible β-lactamase in Enterobacter. , 1967 .

[190]  G. Rolinson,et al.  New Semi-synthetic Penicillin active against Pseudomonas pyocyanea , 1967, Nature.

[191]  T. Hennessey Inducible beta-lactamase in Enterobacter. , 1967, Journal of general microbiology.

[192]  Y. Araki,et al.  Effect of penicillin on cell wall mucopeptide synthesis in a Escherichia coli particulate system. , 1966, Biochemical and biophysical research communications.

[193]  J. Strominger,et al.  Biosynthesis of the peptidoglycan of bacterial cell walls. I. Utilization of uridine diphosphate acetylmuramyl pentapeptide and uridine diphosphate acetylglucosamine for peptidoglycan synthesis by particulate enzymes from Staphylococcus aureus and Micrococcus lysodeikticus. , 1966, Archives of biochemistry and biophysics.

[194]  D J Tipper,et al.  Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[195]  E. Abraham,et al.  Cephalosporinase and penicillinase activities of a beta-lactamase from Pseudomonas pyocyanea. , 1965, The Biochemical journal.

[196]  E. M. Wise,et al.  Penicillin: its basic site of action as an inhibitor of a peptide cross-linking reaction in cell wall mucopeptide synthesis. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[197]  Hayton-Williams Ds RENAL BIOPS IN CHILDREN. , 1965 .

[198]  M. Salton The relationship between the nature of the cell wall and the Gram stain. , 1963, Journal of general microbiology.

[199]  E. Abraham,et al.  The structure of cephalosporin C , 1961 .

[200]  J. Mandelstam Isolation of Lysozyme-soluble Mucopeptides from the Cells Wall of Escherichia coli , 1961, Nature.

[201]  G. Taylor,et al.  Sodium methicillin in routine therpay. , 1961, Lancet.

[202]  M. Salton Specific Detection of Glucose on Paper Chromatograms , 1960, Nature.

[203]  H. H. Martin,et al.  The rigid layer of the cell wall of Escherichia coli strain B. , 1960, Journal of general microbiology.

[204]  K. R. Logan,et al.  A GENERAL SYNTHESIS OF THE PENICILLINS , 1959 .

[205]  D. E. Rogers The changing pattern of life-threatening microbial disease. , 1959, The New England journal of medicine.

[206]  R. Repaske,et al.  Lysis of gram-negative organisms and the role of versene. , 1958, Biochimica et biophysica acta.

[207]  A. Wardlaw,et al.  Development of Lysozyme-Resistance in Micrococcus Lysodiekticus and its Association With an Increased O-Acetyl Content of the Cell Wall , 1958, Nature.

[208]  W. Weidel,et al.  Biochemical parallels between lysis by virulent phage and lysis by penicillin. , 1958, Journal of general microbiology.

[209]  E. Work,et al.  Biochemistry of the Bacterial Cell Wall , 1957, Nature.

[210]  J. Strominger,et al.  Mode of Action of Penicillin Biochemical Basis for the Mechanism of Action of Penicillin and for Its Selective Toxicity , 1957 .

[211]  S. Schepartz,et al.  THE NATURE OF THE BINDING OF PENICILLIN BY BACTERIAL CELLS , 1956, Journal of bacteriology.

[212]  C. Cummins The Chemical Composition of the Bacterial Cell Wall , 1956 .

[213]  F. Dark,et al.  An Unidentified Amino-sugar present in Cell Walls and Spores of Various Bacteria , 1956, Nature.

[214]  M. Finland Emergence of antibiotic-resistant bacteria. , 1955, The New England journal of medicine.

[215]  M. Gougis [History of antibiotics]. , 1955, Concours medical.

[216]  P. Cooper The site of action of penicillin: some properties of the penicillin-binding component of Staphylococcus aureus. , 1955, Journal of general microbiology.

[217]  J. Hillier,et al.  ELECTRON MICROSCOPY OF ULTRA-THIN SECTIONS OF BACTERIA I , 1953, Journal of bacteriology.

[218]  M. Salton,et al.  Studies of the bacterial cell wall. IV. The composition of the cell walls of some Gram-positive and Gram-negative bacteria. , 1953, Biochimica et biophysica acta.

[219]  J. T. Park Uridine-5'-pyrophosphate derivatives. III. Amino acid-containing derivatives. , 1952, The Journal of biological chemistry.

[220]  R. Horne,et al.  Studies of the bacterial cell wall. II. Methods of preparation and some properties of cell walls. , 1951, Biochimica et biophysica acta.

[221]  M. Finland,et al.  In vitro susceptibility of pathogenic staphylococci to seven antibiotics. , 1950, American journal of clinical pathology.

[222]  D. Rowley,et al.  Location of Radioactive Penicillin in Staphylococcus aureus after Contact with the Drug , 1949, Nature.

[223]  M. Barber,et al.  Bacteriophage Types in Penicillin-resistant Staphylococcal Infection , 1949, British medical journal.

[224]  Marvin J. Johnson,et al.  THE RELATIONS BETWEEN BOUND PENICILLIN AND GROWTH IN STAPHYLOCOCCUS AUREUS , 1949, Journal of bacteriology.

[225]  M. J. Johnson,et al.  Accumulation of labile phosphate in Staphylococcus aureus grown in the presence of penicillin. , 1949, The Journal of biological chemistry.

[226]  Marvin J. Johnson,et al.  PENICILLIN UPTAKE BY BACTERIAL CELLS , 1949, Journal of bacteriology.

[227]  D. Rowley,et al.  Investigations with Radioactive Penicillin , 1949, Nature.

[228]  M. Barber,et al.  Infection by penicillin-resistant staphylococci. , 1948, Lancet.

[229]  J. Corse,et al.  Biosynthesis of penicillins; preparation and evaluation of precursors for new penicillins. , 1948, The Journal of biological chemistry.

[230]  I. Friedmann Staphylococcal Infection due to Penicillin-resistant Strains , 1948, British medical journal.

[231]  H. Taussig,et al.  Surgery of congenital heart diseases. , 1947, Lancet.

[232]  M. Barber Coagulase‐positive staphylococci resistant to penicillin , 1947 .

[233]  Duguid Jp,et al.  The Sensitivity of Bacteria to the Action of Penicillin , 1946, Edinburgh medical journal.

[234]  J. Duguid The Sensitivity of Bacteria to the Action of Penicillin , 1946, Edinburgh medical journal.

[235]  C. H. Werkman,et al.  On the mode of action of penicillin. , 1946, Federation proceedings.

[236]  E. Gallardo Sensitivity of Bacteria from Infected Wounds to Penicillin : II. Results in One Hundred and Twelve Cases. , 1945 .

[237]  J. Mcintosh,et al.  Bacteriological aspects of penicillin therapy , 1945 .

[238]  W. M. Kirby EXTRACTION OF A HIGHLY POTENT PENICILLIN INACTIVATOR FROM PENICILLIN RESISTANT STAPHYLOCOCCI , 1944, Science.

[239]  A. Fleming STREPTOCOCCAL MENINGITIS TREATED WITH PENICILLIN.: MEASUREMENT OF BACTERIOSTATIC POWER OF BLOOD AND CEREBROSPINAL FLUID , 1943 .

[240]  C. Rammelkamp,et al.  PENICILLIN: ITS ANTIBACTERIAL EFFECT IN WHOLE BLOOD AND SERUM FOR THE HEMOLYTIC STREPTOCOCCUS AND STAPHYLOCOCCUS AUREUS. , 1943, The Journal of clinical investigation.

[241]  W. Wood,et al.  PENICILLIN IN THE TREATMENT OF INFECTIONS: A REPORT OF 500 CASES , 1943 .

[242]  C. Rammelkamp,et al.  THE ABSORPTION, EXCRETION, AND DISTRIBUTION OF PENICILLIN. , 1943, The Journal of clinical investigation.

[243]  H. Florey,et al.  GENERAL AND LOCAL ADMINISTRATION OF PENICILLIN , 1943 .

[244]  C. Rammelkamp,et al.  Resistance of Staphylococcus aureus to the Action of Penicillin.∗ , 1942 .

[245]  G. Hobby,et al.  Ghemotherapeutic Activity of Penicillin.∗ , 1942 .

[246]  Howard Florey,et al.  FURTHER OBSERVATIONS ON PENICILLIN , 1941 .

[247]  E. Abraham,et al.  An Enzyme from Bacteria able to Destroy Penicillin , 1940, Nature.

[248]  A. D. Gardner Morphological Effects of Penicillin on Bacteria , 1940, Nature.

[249]  A. Fleming,et al.  On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzæ , 1929 .

[250]  E. W. Essays on the Floating-Matter of the Air in Relation to Putrefaction and Infection , 1881, Nature.

[251]  J. Tyndall II. The optical deportment of the atmosphere in relation to the phenomena of putrefaction and infection , 1876, Philosophical Transactions of the Royal Society of London.

[252]  J. Lister XVI.— A Contribution to the Germ Theory of Putrefaction and other Fermentative Changes, and to the Natural History of Torulæ and Bacteria , 1875 .

[253]  William Chandler Roberts,et al.  XII. Studies on biogenesis , 1874, Philosophical Transactions of the Royal Society of London.

[254]  Burdon-Sanderson Memoirs: The Origin and Distribution of Microzymes (Bacteria) in Water, and the Circumstances which determine their Existence in the Tissues and Liquids of the Living Body , 1871 .