A novel fabrication strategy for highly porous FeAl/Al2O3 composite by thermal explosion in vacuum

[1]  X. Jiao,et al.  Fe-Al intermetallic foam with porosity above 60 % prepared by thermal explosion , 2018 .

[2]  T. V. Melnichenko,et al.  Structure and properties of porous nickel and copper films produced by vacuum deposition from the vapour phase , 2017 .

[3]  M. Verdian Fabrication of FeAl(Cu) intermetallic coatings by plasma spraying of vacuum annealed powders , 2016 .

[4]  Xiaohong Wang,et al.  Fabrication and properties of freeze-cast mullite foams derived from coal-series kaolin , 2016 .

[5]  C. Yeh,et al.  Use of TiH2 as a reactant in combustion synthesis of porous Ti5Si3 and Ti5Si3/TiAl intermetallics , 2016 .

[6]  Xiaohong Wang,et al.  Synthesis and Properties of MoSi2–MoB–SiC Ceramics , 2016 .

[7]  W. J. Stępniowski,et al.  Crystalline oxalic acid aided FeAl intermetallic alloy sintering. Fabrication of intermetallic foam with porosity above 45 , 2016 .

[8]  Shi-cheng Feng,et al.  Effect of Ti–Al content on microstructure and mechanical properties of Cf/Al and TiAl joint by laser ignited self-propagating high-temperature synthesis , 2015 .

[9]  H. Liao,et al.  Microstructure and wear resistance of FeAl/Al2O3 intermetallic composite coating prepared by atmospheric plasma spraying , 2015 .

[10]  M. Wevers,et al.  Quantitative 3D characterisation of porous NiTi fabricated by self-propagating high temperature synthesis using X-ray microtomography , 2015 .

[11]  Y. Yang,et al.  Effect of Ni addition on the formation mechanism of Ti5Si3 during self-propagation high-temperature synthesis and mechanical property , 2014 .

[12]  Yuehui He,et al.  Effects of the Al content on pore structures of porous Ti3AlC2 ceramics by reactive synthesis , 2014 .

[13]  M. Enayati,et al.  Kinetic analysis of thermite reaction in Al–Ti–Fe2O3 system to produce (Fe,Ti)3Al–Al2O3 nanocomposite , 2014 .

[14]  I. Karaman,et al.  Processing and characterization of porous Ti2AlC with controlled porosity and pore size , 2012 .

[15]  S. Chandrasekar,et al.  Microstructure and mechanical properties of duplex stainless steels sintered in different atmospheres , 2011 .

[16]  N. Xu,et al.  Porous FeAl intermetallics fabricated by elemental powder reactive synthesis , 2009 .

[17]  F. Karimzadeh,et al.  The structure and mechanical properties of Fe3Al–30 vol.% Al2O3 nanocomposite , 2009 .

[18]  F. Maglia,et al.  Self-propagating high-temperature synthesis of ZrB2 or TiB2 reinforced Ni–Al composite powder , 2009 .

[19]  John Banhart,et al.  Porous Metals and Metallic Foams: Current Status and Recent Developments , 2008 .

[20]  N. Xu,et al.  Effect of heating rate on pore structure of porous FeAl material , 2008 .

[21]  N. Xu,et al.  Effects of the Al content on pore structures of porous Ti–Al alloys , 2008 .

[22]  T. Kulik,et al.  Nanocrystalline FeAl-TiN composites obtained by hot-pressing consolidation of reactively milled powders , 2007 .

[23]  Hua-ming Wang,et al.  High-temperature wear resistance of a laser clad TiC reinforced FeAl in situ composite coating , 2004 .

[24]  S. Gedevanishvili,et al.  Processing of iron aluminides by pressureless sintering through Fe + Al elemental route , 2002 .

[25]  Sujit Roy,et al.  A study of self-propagating high-temperature synthesis of NiAl in thermal explosion mode , 2002 .

[26]  P. Xiao,et al.  Mechanisms of the aluminium-iron oxide thermite reaction , 1999 .

[27]  N. Stoloff Iron aluminides: present status and future prospects , 1998 .

[28]  J. B. Holt,et al.  The combustion synthesis of copper aluminides , 1990 .

[29]  F. Karimzadeh,et al.  Mechanochemical behavior of Fe2O3–Al–Fe powder mixtures to produce Fe3Al–Al2O3 nanocomposite powder , 2008 .