Reactive transport and mass balance modeling of the Stimson sedimentary formation and altered fracture zones constrain diagenetic conditions at Gale crater, Mars

[1]  Andrew Steele,et al.  Evolved gas analyses of sedimentary rocks and eolian sediment in Gale Crater, Mars: Results of the Curiosity rover's sample analysis at Mars instrument from Yellowknife Bay to the Namib Dune , 2017 .

[2]  D. Ming,et al.  A Two‐Step K‐Ar Experiment on Mars: Dating the Diagenetic Formation of Jarosite from Amazonian Groundwaters , 2017 .

[3]  D. Ming,et al.  Multiple stages of aqueous alteration along fractures in mudstone and sandstone strata in Gale Crater, Mars , 2017 .

[4]  Linda C. Kah,et al.  Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars , 2017 .

[5]  D. Ming,et al.  Redox stratification of an ancient lake in Gale crater, Mars , 2017, Science.

[6]  Jeffrey R. Johnson,et al.  Diagenetic silica enrichment and late‐stage groundwater activity in Gale crater, Mars , 2017 .

[7]  D. Ming,et al.  Calcium Sulfates at Gale Crater and Limitations on Gypsum Stability , 2017 .

[8]  Li Li,et al.  Expanding the role of reactive transport models in critical zone processes , 2017 .

[9]  Linda C. Kah,et al.  Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale crater, Mars , 2017 .

[10]  K. Edgett,et al.  Paleotopography of Erosional Unconformity, Base of Stimson Formation, Gale Crater, Mars , 2016 .

[11]  E. Hausrath,et al.  Weathering Profiles in Phosphorus-Rich Rocks at Gusev Crater, Mars, Suggest Dissolution of Phosphate Minerals into Potentially Habitable Near-Neutral Waters. , 2015, Astrobiology.

[12]  R. E. Arvidson,et al.  Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars , 2015, Science.

[13]  B. Ehlmann,et al.  Modeling the thermal and physical evolution of Mount Sharp's sedimentary rocks, Gale Crater, Mars: Implications for diagenesis on the MSL Curiosity rover traverse , 2015 .

[14]  G. Matthews,et al.  Validated a priori calculation of tortuosity in porous materials including sandstone and limestone , 2015 .

[15]  E. Hausrath,et al.  Assessing hydrodynamic effects on jarosite dissolution rates, reaction products, and preservation on Mars , 2015 .

[16]  Carl I. Steefel,et al.  A reactive transport benchmark on heavy metal cycling in lake sediments , 2015, Computational Geosciences.

[17]  Thomas Kalbacher,et al.  Reactive transport codes for subsurface environmental simulation , 2015, Computational Geosciences.

[18]  A. Stack,et al.  Magnesite Step Growth Rates as a Function of the Aqueous Magnesium:Carbonate Ratio , 2014 .

[19]  Linda C. Kah,et al.  Diagenetic origin of nodules in the Sheepbed member, Yellowknife Bay formation, Gale crater, Mars , 2014 .

[20]  R. V. Morris,et al.  Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[21]  A. Yingst,et al.  A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[22]  E. Hausrath,et al.  Readily available phosphate from minerals in early aqueous environments on Mars , 2013 .

[23]  E. Hausrath,et al.  Using the chemical composition of carbonate rocks on Mars as a record of secondary interaction with liquid water , 2013 .

[24]  D. Ming,et al.  APXS of First Rocks Encountered by Curiosity in Gale Crater: Geochemical Diversity and Volatile Element (K and ZN) Enrichment , 2013 .

[25]  Carl I. Steefel,et al.  A Reactive-Transport Model for Weathering Rind Formation on Basalt , 2011 .

[26]  A. Navarre‐Sitchler,et al.  Soil profiles as indicators of mineral weathering rates and organic interactions for a Pennsylvania diabase , 2011 .

[27]  S. Brantley,et al.  Basalt and olivine dissolution under cold, salty, and acidic conditions: What can we learn about recent aqueous weathering on Mars? , 2010 .

[28]  William V. Boynton,et al.  Wet Chemistry experiments on the 2007 Phoenix Mars Scout Lander mission: Data analysis and results , 2010 .

[29]  Kate Maher,et al.  The dependence of chemical weathering rates on fluid residence time , 2009 .

[30]  A. Navarre‐Sitchler,et al.  Evolution of porosity and diffusivity associated with chemical weathering of a basalt clast , 2009 .

[31]  Carl I. Steefel,et al.  The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California , 2009 .

[32]  M. Zolotov,et al.  Formation of silica by low-temperature acid alteration of Martian rocks: Physical-chemical constraints , 2008 .

[33]  A. Navarre‐Sitchler,et al.  Basalt weathering rates on Earth and the duration of liquid water on the plains of Gusev Crater, Mars , 2008 .

[34]  M. V. Mironenko,et al.  Timing of acid weathering on Mars: A kinetic‐thermodynamic assessment , 2007 .

[35]  Carl I. Steefel,et al.  The mineral dissolution rate conundrum: Insights from reactive transport modeling of U isotopes and pore fluid chemistry in marine sediments , 2006 .

[36]  F. Mackenzie Sediments, diagenesis, and sedimentary rocks , 2005 .

[37]  S. Gíslason,et al.  The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74°C , 2004 .

[38]  W. Voigt,et al.  Crystallization and Phase Stability of CaSO4 and CaSO4 – Based Salts , 2003 .

[39]  S. P. Anderson,et al.  Linkages Between Weathering and Erosion in a Small, Steep Catchment , 2002 .

[40]  G. Garven,et al.  Calcium mass transport and sandstone diagenesis during compaction-driven flow: Stevens Sandstone, San Joaquin basin, California , 2000 .

[41]  A. Lasaga Kinetic theory in the earth sciences , 1998 .

[42]  C. Steefel,et al.  Approaches to modeling of reactive transport in porous media , 1996 .

[43]  C. Steefel,et al.  A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution rea , 1994 .

[44]  G. F Wade Computer graphics in geology: Edited by R. Pflug and J. W. Harbaugh, 1992, Springer-Verlag, Lecture Notes in Earth Sciences 41, 298 p., DM98, ISBN 3-540-55190-5. , 1993 .

[45]  M. Velbel Constancy of silicate-mineral weathering-rate ratios between natural and experimental weathering: implications for hydrologic control of differences in absolute rates , 1993 .

[46]  O. Chadwick,et al.  From a black to a gray box ― a mass balance interpretation of pedogenesis , 1990 .

[47]  Kenneth Pye,et al.  Aeolian sand and sand dunes , 1990 .

[48]  W. Dietrich,et al.  Metal enrichment in bauxites by deposition of chemically mature aeolian dust , 1988, Nature.

[49]  William E. Dietrich,et al.  Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis , 1987 .

[50]  J. R. O'neil,et al.  Present day serpentinization in New Caledonia, Oman and Yugoslavia , 1978 .