Traveling waves in actin dynamics and cell motility.

[1]  G. von Dassow,et al.  A Rho GTPase signal treadmill backs a contractile array. , 2012, Developmental cell.

[2]  Denis Aubry,et al.  'Run-and-tumble' or 'look-and-run'? A mechanical model to explore the behavior of a migrating amoeboid cell. , 2012, Journal of theoretical biology.

[3]  L Edelstein-Keshet,et al.  Regimes of wave type patterning driven by refractory actin feedback: transition from static polarization to dynamic wave behaviour , 2012, Physical biology.

[4]  Manuel Théry,et al.  Actin Network Architecture Can Determine Myosin Motor Activity , 2012, Science.

[5]  D. Breitsprecher,et al.  Rocket Launcher Mechanism of Collaborative Actin Assembly Defined by Single-Molecule Imaging , 2012, Science.

[6]  A. Mogilner,et al.  Cell Polarity: Quantitative Modeling as a Tool in Cell Biology , 2012, Science.

[7]  Timothy C. Elston,et al.  Negative Feedback Enhances Robustness in the Yeast Polarity Establishment Circuit , 2012, Cell.

[8]  D. Vavylonis,et al.  Excitable actin dynamics in lamellipodial protrusion and retraction. , 2012, Biophysical journal.

[9]  D. Vavylonis,et al.  A review of models of fluctuating protrusion and retraction patterns at the leading edge of motile cells , 2012, Cytoskeleton.

[10]  Alexandra Jilkine,et al.  Membrane Tension Maintains Cell Polarity by Confining Signals to the Leading Edge during Neutrophil Migration , 2012, Cell.

[11]  K. Chiam,et al.  Investigating circular dorsal ruffles through varying substrate stiffness and mathematical modeling. , 2011, Biophysical journal.

[12]  Clare M. Waterman,et al.  Adhesive F-actin Waves: A Novel Integrin-Mediated Adhesion Complex Coupled to Ventral Actin Polymerization , 2011, PloS one.

[13]  R. Firtel,et al.  The SCAR/WAVE complex is necessary for proper regulation of traction stresses during amoeboid motility , 2011, Molecular biology of the cell.

[14]  E. Ben-Jacob,et al.  “Self-Assisted” Amoeboid Navigation in Complex Environments , 2011, PloS one.

[15]  G. Danuser,et al.  Protein Kinase A Governs a RhoA-RhoGDI Protrusion-Retraction Pacemaker in Migrating Cells , 2011, Nature Cell Biology.

[16]  Julie A. Theriot,et al.  An Adhesion-Dependent Switch between Mechanisms That Determine Motile Cell Shape , 2011, PLoS biology.

[17]  Martin Falcke,et al.  Actin-based propulsion of spatially extended objects , 2011 .

[18]  Alexandra Jilkine,et al.  A Comparison of Mathematical Models for Polarization of Single Eukaryotic Cells in Response to Guided Cues , 2011, PLoS Comput. Biol..

[19]  Suliana Manley,et al.  A role for actin arcs in the leading-edge advance of migrating cells , 2011, Nature Cell Biology.

[20]  Wolfgang Losert,et al.  Cell Shape Dynamics: From Waves to Migration , 2011, PLoS Comput. Biol..

[21]  J. Tyson,et al.  Computational Cell Biology , 2010 .

[22]  Pablo A Iglesias,et al.  Cells navigate with a local-excitation, global-inhibition-biased excitable network , 2010, Proceedings of the National Academy of Sciences.

[23]  Erwin Frey,et al.  Polar patterns of driven filaments , 2010, Nature.

[24]  A. Carlsson,et al.  Dendritic actin filament nucleation causes traveling waves and patches. , 2010, Physical review letters.

[25]  Gaudenz Danuser,et al.  Supporting Material : Modeling of protrusion phenotypes driven by the actin-membrane interaction , 2009 .

[26]  Frank Jülicher,et al.  Bipedal locomotion in crawling cells. , 2010, Biophysical journal.

[27]  Erik S. Welf,et al.  Stochastic Model of Integrin-Mediated Signaling and Adhesion Dynamics at the Leading Edges of Migrating Cells , 2010, PLoS Comput. Biol..

[28]  S. Diez,et al.  Propagating waves separate two states of actin organization in living cells , 2009, HFSP journal.

[29]  Lucinda E. Maddera,et al.  Self-organizing actin waves as planar phagocytic cup structures , 2009, Cell adhesion & migration.

[30]  Michael Sixt,et al.  Mechanical modes of 'amoeboid' cell migration. , 2009, Current opinion in cell biology.

[31]  Nir S Gov,et al.  Calcium-actin waves and oscillations of cellular membranes. , 2009, Biophysical journal.

[32]  Kinneret Keren,et al.  The Shape of Motile Cells , 2009, Current Biology.

[33]  Gaudenz Danuser,et al.  Coordination of Rho GTPase activities during cell protrusion , 2009, Nature.

[34]  P. Maini,et al.  Waves and patterning in developmental biology: vertebrate segmentation and feather bud formation as case studies. , 2009, The International journal of developmental biology.

[35]  Till Bretschneider,et al.  The three-dimensional dynamics of actin waves, a model of cytoskeletal self-organization. , 2009, Biophysical journal.

[36]  Masaki Sasai,et al.  Cortical Factor Feedback Model for Cellular Locomotion and Cytofission , 2009, PLoS Comput. Biol..

[37]  David J Odde,et al.  Traction Dynamics of Filopodia on Compliant Substrates , 2008, Science.

[38]  S. Whitelam,et al.  Transformation from spots to waves in a model of actin pattern formation. , 2008, Physical review letters.

[39]  Michael P. Sheetz,et al.  Quantification of Cell Edge Velocities and Traction Forces Reveals Distinct Motility Modules during Cell Spreading , 2008, PloS one.

[40]  M. G. Vicker,et al.  Dual chemotaxis signalling regulates Dictyostelium development: intercellular cyclic AMP pulses and intracellular F-actin disassembly waves induce each other. , 2008, European journal of cell biology.

[41]  M. Falcke,et al.  Dynamic regimes and bifurcations in a model of actin-based motility. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Guillaume Charras,et al.  Blebs lead the way: how to migrate without lamellipodia , 2008, Nature Reviews Molecular Cell Biology.

[43]  Konstantin Doubrovinski,et al.  Cytoskeletal waves in the absence of molecular motors , 2008 .

[44]  Alexandra Jilkine,et al.  Wave-pinning and cell polarity from a bistable reaction-diffusion system. , 2008, Biophysical journal.

[45]  L Mahadevan,et al.  Life and times of a cellular bleb. , 2008, Biophysical journal.

[46]  Marc W Kirschner,et al.  An Actin-Based Wave Generator Organizes Cell Motility , 2007, PLoS biology.

[47]  N. Gov,et al.  Membrane waves driven by actin and Myosin. , 2007, Physical review letters.

[48]  Yoav Freund,et al.  Lamellipodial Actin Mechanically Links Myosin Activity with Adhesion-Site Formation , 2007, Cell.

[49]  Chris H Wiggins,et al.  Lateral membrane waves constitute a universal dynamic pattern of motile cells. , 2006, Physical review letters.

[50]  G. Danuser,et al.  Morphodynamic profiling of protrusion phenotypes. , 2006, Biophysical journal.

[51]  Ajay Gopinathan,et al.  Dynamics of membranes driven by actin polymerization. , 2005, Biophysical journal.

[52]  Till Bretschneider,et al.  Mobile actin clusters and traveling waves in cells recovering from actin depolymerization. , 2004, Biophysical journal.

[53]  M A J Chaplain,et al.  A mathematical model for the dynamics of large membrane deformations of isolated fibroblasts , 2004, Bulletin of mathematical biology.

[54]  M. Sheetz,et al.  Periodic Lamellipodial Contractions Correlate with Rearward Actin Waves , 2004, Cell.

[55]  S. Diez,et al.  Dynamic Actin Patterns and Arp2/3 Assembly at the Substrate-Attached Surface of Motile Cells , 2004, Current Biology.

[56]  M. G. Vicker,et al.  Eukaryotic cell locomotion depends on the propagation of self-organized reaction-diffusion waves and oscillations of actin filament assembly. , 2002, Experimental cell research.

[57]  M. G. Vicker F‐actin assembly in Dictyostelium cell locomotion and shape oscillations propagates as a self‐organized reaction–diffusion wave , 2002, FEBS letters.

[58]  Roy D. Welch,et al.  Pattern formation and traveling waves in myxobacteria: Theory and modeling , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[59]  T. Svitkina,et al.  Actin machinery: pushing the envelope. , 2000, Current opinion in cell biology.

[60]  M. Sheetz,et al.  Cell migration as a five-step cycle. , 1999, Biochemical Society symposium.

[61]  H. Meinhardt Orientation of chemotactic cells and growth cones: models and mechanisms. , 1999, Journal of cell science.

[62]  W Alt,et al.  Cytoplasm dynamics and cell motion: two-phase flow models. , 1999, Mathematical biosciences.

[63]  B. Hinz,et al.  Patterns of spontaneous motility in videomicrographs of human epidermal keratinocytes (HEK). , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[64]  A. Zhabotinsky,et al.  Concentration Wave Propagation in Two-dimensional Liquid-phase Self-oscillating System , 1970, Nature.

[65]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[66]  R. Fisher THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES , 1937 .

[67]  M. G. Vicker,et al.  Cell movement and shape are non-random and determined by intracellular, oscillatory rotating waves in Dictyostelium amoebae. , 1994, Bio Systems.

[68]  P. Haccou Mathematical Models of Biology , 2022 .