Tableau Calculus for Order Sorted Logic

In this paper we discuss a calculus for order sorted logic, based on an extension of the tableau method. We first present the background of our investigation by specifying the underlying representation language and its interpretation. Then we introduce the tableau calculus for order sorted logic and show the completeness of the method. Finally we discuss some issues related to the implementation of the presented calculus.

[1]  Wolfgang Schönfeld Prolog Extensions Based on Tableau Calculus , 1985, IJCAI.

[2]  H. M. Macneille,et al.  Partially ordered sets , 1937 .

[3]  Christoph Walther,et al.  A Many-Sorted Calculus Based on Resolution and Paramodulation , 1982, IJCAI.

[4]  Hartmut Ehrig,et al.  Fundamentals of Algebraic Specification 1 , 1985, EATCS Monographs on Theoretical Computer Science.

[5]  Alan Mycroft,et al.  A Polymorphic Type System for Prolog , 1984, Logic Programming Workshop.

[6]  Udo Pletat,et al.  The Knowledge Representation Language L-LILOG , 1988, Text Understanding in LILOG.

[7]  R. Smullyan First-Order Logic , 1968 .

[8]  Arnold Oberschelp Untersuchungen zur mehrsortigen Quantorenlogik , 1962 .

[9]  Christoph Walther,et al.  Many-sorted unification , 1988, JACM.

[10]  Leon Sterling,et al.  The Art of Prolog , 1987, IEEE Expert.

[11]  Alan M. Frisch A General Framework for Sorted Deduction: Fundamental Results on Hybrid Reasoning , 1989, International Conference on Principles of Knowledge Representation and Reasoning.

[12]  Hassan Aït-Kaci,et al.  LOGIN: A Logic Programming Language with Built-In Inheritance , 1986, J. Log. Program..