A Framework for Discrete Integral Transformations II-The 2D Discrete Radon Transform

Although naturally at the heart of many fundamental physical computations, and potentially useful in many important image processing tasks, the Radon transform lacks a coherent discrete definition for two-dimensional (2D) discrete images which is algebraically exact, invertible, and rapidly computable. We define a notion of 2D discrete Radon transforms for 2D discrete images, which is based on summation along lines of absolute slope less than 1. Values at nongrid locations are defined using trigonometric interpolation on a zero-padded grid. Our definition is shown to be geometrically faithful: the summation avoids wrap-around effects. Our proposal uses a special collection of lines in $\mathbb{R}^{2}$ for which the transform is rapidly computable and invertible. We describe a fast algorithm using $O(N\log{N})$ operations, where $N =n^{2}$ is the number of pixels in the image. The fast algorithm exploits a discrete projection-slice theorem, which associates the discrete Radon transform with the pseudopolar Fourier transform [A. Averbuch et al., SIAM J. Sci. Comput., 30 (2008), pp. 764-784]. Our definition for discrete images converges to a natural continuous counterpart with increasing refinement.

[1]  Martin L. Brady,et al.  A Fast Discrete Approximation Algorithm for the Radon Transform , 1998, SIAM J. Comput..

[2]  P. Heywood Trigonometric Series , 1968, Nature.

[3]  A. G. Flesia,et al.  Digital Ridgelet Transform Based on True Ridge Functions , 2003 .

[4]  D. Donoho,et al.  Fast Slant Stack: a notion of Radon transform for data in a Cartesian grid which is rapidly computable, algebraically exact, geometrically faithful and invertible , 2003 .

[5]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[6]  S. Deans The Radon Transform and Some of Its Applications , 1983 .

[7]  Wan-Chi Siu,et al.  The discrete periodic Radon transform , 1996, IEEE Trans. Signal Process..

[8]  Achi Brandt,et al.  A Fast and Accurate Multilevel Inversion of the Radon Transform , 1999, SIAM J. Appl. Math..

[9]  R. Courant,et al.  Introduction to Calculus and Analysis , 1991 .

[10]  Ronald R. Coifman,et al.  A Framework for Discrete Integral Transformations I-The Pseudopolar Fourier Transform , 2008, SIAM J. Sci. Comput..

[11]  Gregory Beylkin,et al.  Discrete radon transform , 1987, IEEE Trans. Acoust. Speech Signal Process..

[12]  W. A. Götz,et al.  A fast digital Radon transform--An efficient means for evaluating the Hough transform , 1995, Pattern Recognit..

[13]  G. Herman,et al.  Image reconstruction from linograms: implementation and evaluation. , 1988, IEEE transactions on medical imaging.

[14]  Jan Flusser,et al.  Image Representation Via a Finite Radon Transform , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Ronald R. Coifman,et al.  Fast Slant Stack: a Notion of Radon Transform for Data in a Cartesian Grid Which Is Rapidly Computible, Algebraically Exact, Geometrically Faithful and Invertible , 2001 .

[16]  Achi Brandt,et al.  Fast Calculation of Multiple Line Integrals , 1999, SIAM J. Sci. Comput..

[17]  J. Astola,et al.  Discrete diffraction transform for propagation, reconstruction, and design of wavefield distributions. , 2008, Applied optics.

[18]  G. Herman,et al.  Linograms in Image Reconstruction from Projections , 1987, IEEE Transactions on Medical Imaging.

[19]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[20]  Vijay K. Madisetti,et al.  The fast discrete Radon transform , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[21]  Vijay K. Madisetti,et al.  The fast discrete Radon transform. I. Theory , 1993, IEEE Trans. Image Process..