Cellular processing and destinies of artificial DNA nanostructures.

Since many bionanotechnologies are targeted at cells, understanding how and where their interactions occur and the subsequent results of these interactions is important. Changing the intrinsic properties of DNA nanostructures and linking them with interactions presents a holistic and powerful strategy for understanding dual nanostructure-biological systems. With the recent advances in DNA nanotechnology, DNA nanostructures present a great opportunity to understand the often convoluted mass of information pertaining to nanoparticle-biological interactions due to the more precise control over their chemistry, sizes, and shapes. Coupling just some of these designs with an understanding of biological processes is both a challenge and a source of opportunities. Despite continuous advances in the field of DNA nanotechnology, the intracellular fate of DNA nanostructures has remained unclear and controversial. Because understanding its cellular processing and destiny is a necessary prelude to any rational design of exciting and innovative bionanotechnology, in this review, we will discuss and provide a comprehensive picture relevant to the intracellular processing and the fate of various DNA nanostructures which have been remained elusive for some time. We will also link the unique capabilities of DNA to some novel ideas for developing next-generation bionanotechnologies.

[1]  M. Noteborn Proteins selectively killing tumor cells. , 2009, European journal of pharmacology.

[2]  Hao Yan,et al.  Complex wireframe DNA origami nanostructures with multi-arm junction vertices. , 2015, Nature nanotechnology.

[3]  Tim Liedl,et al.  One-Step Formation of "Chain-Armor"-Stabilized DNA Nanostructures. , 2015, Angewandte Chemie.

[4]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[5]  Hao Yan,et al.  DNA directed self-assembly of anisotropic plasmonic nanostructures. , 2011, Journal of the American Chemical Society.

[6]  Paul W. Wiseman,et al.  Sequence-responsive unzipping DNA cubes with tunable cellular uptake profiles , 2014 .

[7]  Wim E Hennink,et al.  Hydrogels for protein delivery. , 2012, Chemical reviews.

[8]  J. Collins,et al.  A brief history of synthetic biology , 2014, Nature Reviews Microbiology.

[9]  A. Herrmann,et al.  Cellular Uptake of DNA Block Copolymer Micelles with Different Shapes , 2008 .

[10]  N. Seeman,et al.  Programmable materials and the nature of the DNA bond , 2015, Science.

[11]  Luvena L. Ong,et al.  Three-Dimensional Structures Self-Assembled from DNA Bricks , 2012, Science.

[12]  D. Clewell,et al.  Effects of rifampicin, streptolydigin and actinomycin D on the replication of Col E1 plasmid DNA in Escherichia coli. , 1973, Journal of molecular biology.

[13]  P. Cullis,et al.  Drug Delivery Systems: Entering the Mainstream , 2004, Science.

[14]  Philip Tinnefeld,et al.  Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas , 2012, Science.

[15]  C. Mao,et al.  Self-assembly of DNA nanotubes with defined diameters and lengths. , 2014, Small.

[16]  A. Kuzyk,et al.  Reconfigurable 3D plasmonic metamolecules. , 2014, Nature materials.

[17]  C. Mirkin,et al.  Cellular response of polyvalent oligonucleotide-gold nanoparticle conjugates. , 2010, ACS nano.

[18]  Katsuhiko Ariga,et al.  Nanoarchitectonics for Dynamic Functional Materials from Atomic‐/Molecular‐Level Manipulation to Macroscopic Action , 2016, Advanced materials.

[19]  Jiye Shi,et al.  Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. , 2014, Angewandte Chemie.

[20]  N. Seeman,et al.  A nanomechanical device based on the B–Z transition of DNA , 1999, Nature.

[21]  Hendrik Dietz,et al.  Efficient Production of Single-Stranded Phage DNA as Scaffolds for DNA Origami , 2015, Nano letters.

[22]  C. Mirkin,et al.  Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. , 2007, Nano letters.

[23]  N. Seeman,et al.  DNA double-crossover molecules. , 1993, Biochemistry.

[24]  J. Benoit,et al.  Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. , 2006, Journal of biomedical materials research. Part A.

[25]  Hao Yan,et al.  A DNA-directed light-harvesting/reaction center system. , 2014, Journal of the American Chemical Society.

[26]  N. Seeman,et al.  Operation of a DNA Robot Arm Inserted into a 2D DNA Crystalline Substrate , 2006, Science.

[27]  Jarno Salonen,et al.  Inhibition of Multidrug Resistance of Cancer Cells by Co‐Delivery of DNA Nanostructures and Drugs Using Porous Silicon Nanoparticles@Giant Liposomes , 2015 .

[28]  Daniel K. Bonner,et al.  Self-assembled RNA interference microsponges for efficient siRNA delivery. , 2012, Nature materials.

[29]  J. Spudich,et al.  Mechanical coordination in motor ensembles revealed using engineered artificial myosin filaments. , 2015, Nature nanotechnology.

[30]  Chad A. Mirkin,et al.  DNA-mediated nanoparticle crystallization into Wulff polyhedra , 2013, Nature.

[31]  N. Dias,et al.  Antisense oligonucleotides: basic concepts and mechanisms. , 2002, Molecular cancer therapeutics.

[32]  Masayuki Endo,et al.  Single-molecule analysis using DNA origami. , 2012, Angewandte Chemie.

[33]  Hak Soo Choi,et al.  Design considerations for tumour-targeted nanoparticles. , 2010, Nature nanotechnology.

[34]  W. Pigram,et al.  Stereochemistry of intercalation: interaction of daunomycin with DNA. , 1972, Nature: New biology.

[35]  Masakazu Aono,et al.  Nanoarchitectonics: a new materials horizon for nanotechnology , 2015 .

[36]  William M. Shih,et al.  A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron , 2004, Nature.

[37]  C. Mirkin,et al.  Plasmonic photonic crystals realized through DNA-programmable assembly , 2014, Proceedings of the National Academy of Sciences.

[38]  Sandra L. Schmid,et al.  Regulated portals of entry into the cell , 2003, Nature.

[39]  N. Seeman DNA in a material world , 2003, Nature.

[40]  Hao Yan,et al.  In vivo cloning of artificial DNA nanostructures , 2008, Proceedings of the National Academy of Sciences.

[41]  Yang Xu,et al.  Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. , 2010, ACS nano.

[42]  E. Caron,et al.  Molecular mechanisms of phagocytic uptake in mammalian cells , 2008, Cellular and Molecular Life Sciences.

[43]  Chad A. Mirkin,et al.  Gene regulation with polyvalent siRNA-nanoparticle conjugates. , 2009, Journal of the American Chemical Society.

[44]  Jeffery T. Davis G-quartets 40 years later: from 5'-GMP to molecular biology and supramolecular chemistry. , 2004, Angewandte Chemie.

[45]  B. Nordén,et al.  Functionalized nanostructures: redox-active porphyrin anchors for supramolecular DNA assemblies. , 2010, ACS nano.

[46]  Adam H. Marblestone,et al.  Rapid prototyping of 3D DNA-origami shapes with caDNAno , 2009, Nucleic acids research.

[47]  Dongyu Liu,et al.  Rolling Circle DNA Synthesis: Small Circular Oligonucleotides as Efficient Templates for DNA Polymerases. , 1996, Journal of the American Chemical Society.

[48]  Nicholas A Peppas,et al.  Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. , 2006, International journal of pharmaceutics.

[49]  Peng Yin,et al.  Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA. , 2012, Nature chemistry.

[50]  Björn Högberg,et al.  Purification of functionalized DNA origami nanostructures. , 2015, ACS nano.

[51]  S. Akira,et al.  A Toll-like receptor recognizes bacterial DNA , 2000, Nature.

[52]  J. Briggs,et al.  A structure of the COPI coat and the role of coat proteins in membrane vesicle assembly , 2015, Science.

[53]  Sandhya P Koushika,et al.  An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism. , 2011, Nature communications.

[54]  S. Howorka,et al.  A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane. , 2016, Nature nanotechnology.

[55]  Wujin Sun,et al.  Advances in Anticancer Protein Delivery using Micro‐/Nanoparticles , 2014, Particle & particle systems characterization : measurement and description of particle properties and behavior in powders and other disperse systems.

[56]  B. Nordén,et al.  Soft-Surface DNA Nanotechnology: DNA Constructs Anchored and Aligned to Lipid Membrane** , 2011, Angewandte Chemie.

[57]  Dan Luo,et al.  Biodegradable CpG DNA hydrogels for sustained delivery of doxorubicin and immunostimulatory signals in tumor-bearing mice. , 2011, Biomaterials.

[58]  Jens Bauer,et al.  Multiscale Origami Structures as Interface for Cells. , 2015, Angewandte Chemie.

[59]  Chunhai Fan,et al.  Reconfigurable three-dimensional DNA nanostructures for the construction of intracellular logic sensors. , 2012, Angewandte Chemie.

[60]  W. Tan,et al.  Self-assembly of a bifunctional DNA carrier for drug delivery. , 2011, Angewandte Chemie.

[61]  Pamela E. Constantinou,et al.  From Molecular to Macroscopic via the Rational Design of a Self-Assembled 3D DNA Crystal , 2009, Nature.

[62]  S. Howorka,et al.  Self-assembled DNA nanopores that span lipid bilayers. , 2013, Nano letters.

[63]  H. Pei,et al.  Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. , 2011, ACS nano.

[64]  Chad A. Mirkin,et al.  Nanoparticle Superlattice Engineering with DNA , 2011, Science.

[65]  M. Hemler Tetraspanin proteins promote multiple cancer stages , 2013, Nature Reviews Cancer.

[66]  P. Couvreur,et al.  Nanocarriers’ entry into the cell: relevance to drug delivery , 2009, Cellular and Molecular Life Sciences.

[67]  Ye Fu,et al.  Nucleic acid modifications with epigenetic significance. , 2012, Current opinion in chemical biology.

[68]  D. Luo,et al.  The assembly of a short linear natural cytosine-phosphate-guanine DNA into dendritic structures and its effect on immunostimulatory activity. , 2009, Biomaterials.

[69]  M. Nerenberg,et al.  Effect of phosphorothioate modification of oligodeoxynucleotides on specific protein binding. , 1994, The Journal of biological chemistry.

[70]  Stefan Howorka,et al.  Bilayer-Spanning DNA Nanopores with Voltage-Switching between Open and Closed State , 2014, ACS nano.

[71]  Qiao Jiang,et al.  Visualization of the intracellular location and stability of DNA origami with a label-free fluorescent probe. , 2012, Chemical communications.

[72]  G. Seelig,et al.  Enzyme-Free Nucleic Acid Logic Circuits , 2022 .

[73]  L. Forró,et al.  Cellular toxicity of carbon-based nanomaterials. , 2006, Nano letters.

[74]  A. Krieg,et al.  Lymphocyte activation by CpG dinucleotide motifs in prokaryotic DNA. , 1996, Trends in microbiology.

[75]  Matthias Heinemann,et al.  Synthetic biology - putting engineering into biology , 2006, Bioinform..

[76]  T. G. Martin,et al.  Rapid Folding of DNA into Nanoscale Shapes at Constant Temperature , 2012, Science.

[77]  N. Seeman,et al.  Paranemic cohesion of topologically-closed DNA molecules. , 2002, Journal of the American Chemical Society.

[78]  J. Doudna,et al.  The new frontier of genome engineering with CRISPR-Cas9 , 2014, Science.

[79]  Matthew J. A. Wood,et al.  DNA cage delivery to mammalian cells. , 2011, ACS nano.

[80]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[81]  Michael J. Campolongo,et al.  Building plasmonic nanostructures with DNA. , 2011, Nature nanotechnology.

[82]  J. Chao,et al.  Rolling circle amplification-based DNA origami nanostructrures for intracellular delivery of immunostimulatory drugs. , 2013, Small.

[83]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[84]  T. Brown,et al.  Click Nucleic Acid Ligation: Applications in Biology and Nanotechnology , 2012, Accounts of chemical research.

[85]  Weihong Tan,et al.  DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery. , 2014, Angewandte Chemie.

[86]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[87]  Chunhai Fan,et al.  Aptamer-based biosensors , 2008 .

[88]  E. Andrianantoandro,et al.  Synthetic biology: new engineering rules for an emerging discipline , 2006, Molecular systems biology.

[89]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.

[90]  Almogit Abu-Horowitz,et al.  Universal computing by DNA origami robots in a living animal , 2014, Nature nanotechnology.

[91]  Mette D. E. Jepsen,et al.  Construction of a 4 zeptoliters switchable 3D DNA box origami. , 2012, ACS nano.

[92]  Dong-Ming Huang,et al.  Aptamer-conjugated DNA icosahedral nanoparticles as a carrier of doxorubicin for cancer therapy. , 2011, ACS nano.

[93]  Patrick D. Halley,et al.  Daunorubicin-Loaded DNA Origami Nanostructures Circumvent Drug-Resistance Mechanisms in a Leukemia Model. , 2016, Small.

[94]  Steven A Benner,et al.  Amplification, mutation, and sequencing of a six-letter synthetic genetic system. , 2011, Journal of the American Chemical Society.

[95]  Katsuhiko Ariga,et al.  Nanoarchitectonics: a conceptual paradigm for design and synthesis of dimension-controlled functional nanomaterials. , 2011, Journal of nanoscience and nanotechnology.

[96]  H. Kim,et al.  A guide to genome engineering with programmable nucleases , 2014, Nature Reviews Genetics.

[97]  W. Olson,et al.  A-form conformational motifs in ligand-bound DNA structures. , 2000, Journal of molecular biology.

[98]  Dongsheng Liu,et al.  Reversible regulation of protein binding affinity by a DNA machine. , 2012, Journal of the American Chemical Society.

[99]  C. Mirkin,et al.  Asymmetric Functionalization of Nanoparticles Based on Thermally Addressable DNA Interconnects , 2006 .

[100]  K. Heeg,et al.  Bacterial DNA as immune cell activator. , 1998, Trends in microbiology.

[101]  Chengde Mao,et al.  DNA nanotubes as combinatorial vehicles for cellular delivery. , 2008, Biomacromolecules.

[102]  R. Jain,et al.  Photodynamic therapy for cancer , 2003, Nature Reviews Cancer.

[103]  S. Yokoyama,et al.  Generation of high-affinity DNA aptamers using an expanded genetic alphabet , 2013, Nature Biotechnology.

[104]  Masakazu Aono,et al.  Nanoarchitectonics: Pioneering a New Paradigm for Nanotechnology in Materials Development , 2012, Advanced materials.

[105]  Nicholas A W Bell,et al.  DNA origami nanopores. , 2012, Nano letters.

[106]  N. Kadowaki,et al.  Optimal Arrangement of Four Short DNA Strands for Delivery of Immunostimulatory Nucleic Acids to Immune Cells. , 2015, Nucleic acid therapeutics.

[107]  K. Lim,et al.  Nano‐Self‐Assembly of Nucleic Acids Capable of Transfection without a Gene Carrier , 2015 .

[108]  Hao Yan,et al.  Self-assembled signaling aptamer DNA arrays for protein detection. , 2006, Angewandte Chemie.

[109]  Masakazu Aono,et al.  The Way to Nanoarchitectonics and the Way of Nanoarchitectonics , 2016, Advanced materials.

[110]  Robert Langer,et al.  An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. , 2006, Angewandte Chemie.

[111]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[112]  Wael Mamdouh,et al.  Single-molecule chemical reactions on DNA origami. , 2010, Nature nanotechnology.

[113]  Hisataka Kobayashi,et al.  Biologically optimized nanosized molecules and particles: more than just size. , 2011, Bioconjugate chemistry.

[114]  Zhen Gu,et al.  Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery. , 2014, Angewandte Chemie.

[115]  Tomoki Shiomi,et al.  Design and development of nanosized DNA assemblies in polypod-like structures as efficient vehicles for immunostimulatory CpG motifs to immune cells. , 2012, ACS nano.

[116]  H. W. Lam,et al.  Catalytic 1,4-Rhodium(III) Migration Enables 1,3-Enynes to Function as One-Carbon Oxidative Annulation Partners in C–H Functionalizations , 2014, Angewandte Chemie.

[117]  W. Chan,et al.  DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination , 2014, Nature nanotechnology.

[118]  Mark Bathe,et al.  A primer to scaffolded DNA origami , 2011, Nature Methods.

[119]  Harry M. T. Choi,et al.  Programming DNA Tube Circumferences , 2008, Science.

[120]  Chor Yong Tay,et al.  Nature-inspired DNA nanosensor for real-time in situ detection of mRNA in living cells. , 2015, ACS nano.

[121]  L. Mawdesley-Thomas Research into Fish Diseases , 1972, Nature.

[122]  J. Shack The influence of sodium and magnesium ions on the action of deoxyribonuclease II. , 1959, The Journal of biological chemistry.

[123]  N. Seeman,et al.  A Proximity-Based Programmable DNA Nanoscale Assembly Line , 2010, Nature.

[124]  Hao Yan,et al.  A DNA nanostructure platform for directed assembly of synthetic vaccines. , 2012, Nano letters.

[125]  C. Mirkin,et al.  Polyvalent nucleic acid nanostructures. , 2011, Journal of the American Chemical Society.

[126]  Jin-Ho Ahn,et al.  Design, assembly, and activity of antisense DNA nanostructures. , 2011, Small.

[127]  C. Mirkin,et al.  Templated techniques for the synthesis and assembly of plasmonic nanostructures. , 2011, Chemical reviews.

[128]  Zhen Gu,et al.  ATP-triggered anticancer drug delivery , 2014, Nature Communications.

[129]  Shawn M. Douglas,et al.  Folding DNA into Twisted and Curved Nanoscale Shapes , 2009, Science.

[130]  Mark E. Davis,et al.  Nanoparticle therapeutics: an emerging treatment modality for cancer , 2008, Nature Reviews Drug Discovery.

[131]  T. LaBean,et al.  Toward larger DNA origami. , 2014, Nano letters.

[132]  Paula T. Hammond,et al.  A Multi‐RNAi Microsponge Platform for Simultaneous Controlled Delivery of Multiple Small Interfering RNAs , 2015, Angewandte Chemie.

[133]  Y. Takakura,et al.  Enhanced immunostimulatory activity of oligodeoxynucleotides by Y‐shape formation , 2008, Immunology.

[134]  N. Seeman,et al.  Synthesis from DNA of a molecule with the connectivity of a cube , 1991, Nature.

[135]  C. Mao,et al.  Tensegrity: construction of rigid DNA triangles with flexible four-arm DNA junctions. , 2004, Journal of the American Chemical Society.

[136]  Hao Yan,et al.  DNA Origami with Complex Curvatures in Three-Dimensional Space , 2011, Science.

[137]  Sonali Saha,et al.  A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells. , 2015, Nature nanotechnology.

[138]  Jiye Shi,et al.  Self-assembly of poly-adenine-tailed CpG oligonucleotide-gold nanoparticle nanoconjugates with immunostimulatory activity. , 2014, Small.

[139]  J. Chao,et al.  Self-assembly of DNA-based drug delivery nanocarriers with rolling circle amplification. , 2014, Methods.

[140]  Tim Liedl,et al.  Cellular immunostimulation by CpG-sequence-coated DNA origami structures. , 2011, ACS nano.

[141]  N. Seeman,et al.  Designed Two-Dimensional DNA Holliday Junction Arrays Visualized by Atomic Force Microscopy , 1999 .

[142]  D. Meldrum,et al.  Stability of DNA origami nanoarrays in cell lysate. , 2011, Nano letters.

[143]  Yamuna Krishnan,et al.  A DNA nanomachine that maps spatial and temporal pH changes inside living cells. , 2009, Nature nanotechnology.

[144]  Cuichen Wu,et al.  Building a multifunctional aptamer-based DNA nanoassembly for targeted cancer therapy. , 2013, Journal of the American Chemical Society.

[145]  Shigeyuki Yokoyama,et al.  An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules , 2008, Nucleic acids research.

[146]  Omid C Farokhzad,et al.  DNA Self-Assembly of Targeted Near-Infrared-Responsive Gold Nanoparticles for Cancer Thermo-Chemotherapy , 2012, Angewandte Chemie.

[147]  A method to study in vivo stability of DNA nanostructures☆ , 2013, Methods.

[148]  M. Komiyama,et al.  Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy , 2011, Nature communications.

[149]  N. Seeman Nanomaterials based on DNA. , 2010, Annual review of biochemistry.

[150]  Chad A. Mirkin,et al.  Intracellular Fate of Spherical Nucleic Acid Nanoparticle Conjugates , 2014, Journal of the American Chemical Society.

[151]  Y. Chai,et al.  RNA responsive and catalytic self-assembly of DNA nanostructures for highly sensitive fluorescence detection of microRNA from cancer cells. , 2015, Chemical communications.

[152]  T. Liedl,et al.  DNA nanotubes as intracellular delivery vehicles in vivo. , 2015, Biomaterials.

[153]  Pekka Orponen,et al.  DNA rendering of polyhedral meshes at the nanoscale , 2015, Nature.

[154]  Yamuna Krishnan,et al.  Designing DNA nanodevices for compatibility with the immune system of higher organisms. , 2015, Nature nanotechnology.

[155]  Anthony D. Keefe,et al.  Aptamers as therapeutics , 2010, Nature Reviews Drug Discovery.

[156]  R. Barrangou,et al.  CRISPR/Cas, the Immune System of Bacteria and Archaea , 2010, Science.

[157]  Crispin R Dass,et al.  Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems , 2013, The Journal of pharmacy and pharmacology.

[158]  C. Mirkin,et al.  Selective enhancement of nucleases by polyvalent DNA-functionalized gold nanoparticles. , 2011, Journal of the American Chemical Society.

[159]  Na Li,et al.  A multicolor nanoprobe for detection and imaging of tumor-related mRNAs in living cells. , 2012, Angewandte Chemie.

[160]  M. I. Setyawati,et al.  Electrochemical Quantification of Escherichia coli with DNA Nanostructure , 2015 .

[161]  Chad A Mirkin,et al.  Directed Assembly of Periodic Materials from Protein and Oligonucleotide-Modified Nanoparticle Building Blocks. , 2001, Angewandte Chemie.

[162]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[163]  S. Cockroft,et al.  An Autonomously Reciprocating Transmembrane Nanoactuator. , 2016, Angewandte Chemie.

[164]  Hao Yan,et al.  Gold nanoparticle self-similar chain structure organized by DNA origami. , 2010, Journal of the American Chemical Society.

[165]  M. Carbone,et al.  The Role of Environmental Carcinogens, Viruses, and Genetic , 2002, Cancer biology & therapy.

[166]  Matthew N. O’Brien,et al.  Nucleic acid-modified nanostructures as programmable atom equivalents: forging a new "table of elements". , 2013, Angewandte Chemie.

[167]  T. M. Herne,et al.  Characterization of DNA Probes Immobilized on Gold Surfaces , 1997 .

[168]  M. I. Setyawati,et al.  Novel theranostic DNA nanoscaffolds for the simultaneous detection and killing of Escherichia coli and Staphylococcus aureus. , 2014, ACS applied materials & interfaces.

[169]  Daniel G. Anderson,et al.  Molecularly Self-Assembled Nucleic Acid Nanoparticles for Targeted In Vivo siRNA Delivery , 2012, Nature nanotechnology.

[170]  J. Wolchok,et al.  Antibody therapy of cancer , 2012, Nature Reviews Cancer.

[171]  Chunhai Fan,et al.  The cytotoxicity of cadmium-based quantum dots. , 2012, Biomaterials.

[172]  S. Murata,et al.  Self-replication of DNA rings. , 2015, Nature nanotechnology.

[173]  Qiao Jiang,et al.  DNA origami as an in vivo drug delivery vehicle for cancer therapy. , 2014, ACS nano.

[174]  C. Mao,et al.  Regulation of vascular smooth muscle cell autophagy by DNA nanotube-conjugated mTOR siRNA. , 2015, Biomaterials.

[175]  Weian Zhao,et al.  DNA‐Scaffolded Multivalent Ligands to Modulate Cell Function , 2014, Chembiochem : a European journal of chemical biology.

[176]  A. Turberfield,et al.  Guiding the folding pathway of DNA origami , 2015, Nature.

[177]  S. Swaminathan,et al.  A DNA aptamer which binds to and inhibits thrombin exhibits a new structural motif for DNA. , 1993, Biochemistry.

[178]  C. Mirkin,et al.  DNA-Mediated Cellular Delivery of Functional Enzymes. , 2015, Journal of the American Chemical Society.

[179]  Chad A Mirkin,et al.  Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates , 2013, Proceedings of the National Academy of Sciences.

[180]  Nan Ma,et al.  Catalytic Molecular Imaging of MicroRNA in Living Cells by DNA-Programmed Nanoparticle Disassembly. , 2016, Angewandte Chemie.

[181]  B. Matthews,et al.  Three-dimensional structure of β-galactosidase from E. coli. , 1994, Nature.

[182]  Weihong Tan,et al.  Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics , 2013, Proceedings of the National Academy of Sciences.

[183]  Site-directed, on-surface assembly of DNA nanostructures. , 2015, Angewandte Chemie.

[184]  Qiao Jiang,et al.  A Self-Assembled DNA Origami-Gold Nanorod Complex for Cancer Theranostics. , 2015, Small.

[185]  Jung-Won Keum,et al.  Enhanced resistance of DNA nanostructures to enzymatic digestion. , 2009, Chemical communications.

[186]  N. Seeman,et al.  Antiparallel DNA Double Crossover Molecules As Components for Nanoconstruction , 1996 .

[187]  R. Levine,et al.  DNA computing circuits using libraries of DNAzyme subunits. , 2010, Nature nanotechnology.

[188]  Friedrich C. Simmel,et al.  DNA nanostructures interacting with lipid bilayer membranes. , 2014, Accounts of chemical research.

[189]  B. Pagano,et al.  Shedding light on the interaction between TMPyP4 and human telomeric quadruplexes. , 2009, The journal of physical chemistry. B.

[190]  Na Liu,et al.  A plasmonic nanorod that walks on DNA origami , 2015, Nature Communications.

[191]  Jie Chao,et al.  Structural DNA nanotechnology for intelligent drug delivery. , 2014, Small.

[192]  R F Murphy,et al.  Endosome pH measured in single cells by dual fluorescence flow cytometry: rapid acidification of insulin to pH 6 , 1984, The Journal of cell biology.

[193]  Hao Yan,et al.  DNA origami as a carrier for circumvention of drug resistance. , 2012, Journal of the American Chemical Society.

[194]  Jing Yang,et al.  DNAzyme-Based Logic Gate-Mediated DNA Self-Assembly. , 2015, Nano letters.

[195]  Kira S. Makarova,et al.  Comparative genomics of defense systems in archaea and bacteria , 2013, Nucleic acids research.

[196]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[197]  Stefan Howorka,et al.  DNA nanoarchitectonics: assembled DNA at interfaces. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[198]  Miu Shan Chan,et al.  Nanoneedle-assisted delivery of site-selective peptide-functionalized DNA nanocages for targeting mitochondria and nuclei. , 2014, Small.

[199]  William M. Shih,et al.  Virus-Inspired Membrane Encapsulation of DNA Nanostructures To Achieve In Vivo Stability , 2014, ACS nano.

[200]  Chad A. Mirkin,et al.  The Structural Characterization of Oligonucleotide-Modified Gold Nanoparticle Networks Formed by DNA Hybridization , 2004 .

[201]  P. Seglen,et al.  Differences between fluid-phase endocytosis (pinocytosis) and receptor-mediated endocytosis in isolated rat hepatocytes. , 1997, European journal of cell biology.

[202]  Zhen Gu,et al.  Tailoring nanocarriers for intracellular protein delivery. , 2011, Chemical Society reviews.

[203]  Juewen Liu,et al.  Functional nucleic acid sensors. , 2009, Chemical reviews.

[204]  T. Krugh Association of actinomycin D and deoxyribodinucleotides as a model for binding of the drug to DNA. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[205]  Y. Weizmann,et al.  Enzymatic synthesis of periodic DNA nanoribbons for intracellular pH sensing and gene silencing. , 2015, Journal of the American Chemical Society.

[206]  Christina D Smolke,et al.  Building outside of the box: iGEM and the BioBricks Foundation , 2009, Nature Biotechnology.

[207]  A. Caudy,et al.  Role for a bidentate ribonuclease in the initiation step of RNA interference , 2001 .

[208]  L. Huang,et al.  Protamine sulfate enhances lipid-mediated gene transfer , 1997, Gene Therapy.

[209]  E. Korn,et al.  PHAGOCYTOSIS OF LATEX BEADS BY ACANTHAMOEBA , 1967, The Journal of cell biology.

[210]  Richard A. Muscat,et al.  DNA nanotechnology from the test tube to the cell. , 2015, Nature nanotechnology.

[211]  Vivek V. Thacker,et al.  Lipid-Bilayer-Spanning DNA Nanopores with a Bifunctional Porphyrin Anchor , 2013, Angewandte Chemie.

[212]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[213]  Hao Yan,et al.  Aptamer-directed self-assembly of protein arrays on a DNA nanostructure. , 2005, Angewandte Chemie.

[214]  A. Vallée-Bélisle,et al.  Enzyme-Operated DNA-Based Nanodevices , 2015, Nano letters.

[215]  Daniel K. Bonner,et al.  Layer-by-Layer Assembled Antisense DNA Microsponge Particles for Efficient Delivery of Cancer Therapeutics , 2014, ACS nano.

[216]  Sai Kishore Ravi,et al.  Progress and perspectives in exploiting photosynthetic biomolecules for solar energy harnessing , 2015 .

[217]  H. Sleiman,et al.  Development and characterization of gene silencing DNA cages. , 2014, Biomacromolecules.

[218]  Wen Jiang,et al.  Exterior modification of a DNA tetrahedron. , 2010, Chemical communications.

[219]  Xiao Yan Wan,et al.  DNA-AuNP networks on cell membranes as a protective barrier to inhibit viral attachment, entry and budding , 2015, Biomaterials.

[220]  Hao Yan,et al.  A DNA Nanostructure‐based Biomolecular Probe Carrier Platform for Electrochemical Biosensing , 2010, Advanced materials.

[221]  A. Ellington,et al.  A stochastic DNA walker that traverses a microparticle surface , 2015, Nature nanotechnology.

[222]  Mi-Gyeong Kim,et al.  Biomimetic DNA nanoballs for oligonucleotide delivery. , 2015, Biomaterials.

[223]  Xiaolei Zuo,et al.  A study of pH-dependence of shrink and stretch of tetrahedral DNA nanostructures. , 2015, Nanoscale.

[224]  M. Edidin,et al.  Shrinking patches and slippery rafts: scales of domains in the plasma membrane. , 2001, Trends in cell biology.

[225]  D. Lelie,et al.  DNA-guided crystallization of colloidal nanoparticles , 2008, Nature.

[226]  Stephanie E. A. Gratton,et al.  The effect of particle design on cellular internalization pathways , 2008, Proceedings of the National Academy of Sciences.

[227]  Zhen Gu,et al.  Cocoon-Like Self-Degradable DNA Nanoclew for Anticancer Drug Delivery , 2014, Journal of the American Chemical Society.

[228]  Jeunghoon Lee,et al.  DNA topology influences molecular machine lifetime in human serum , 2015, Nanoscale.

[229]  J. Reif,et al.  Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes , 2000 .

[230]  Michael Petersen,et al.  LNA: a versatile tool for therapeutics and genomics. , 2003, Trends in biotechnology.

[231]  S. Akira,et al.  Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration , 2004, Nature Medicine.

[232]  A. Krieg,et al.  Immune effects and mechanisms of action of CpG motifs. , 2000, Vaccine.

[233]  Chunhai Fan,et al.  Growth and origami folding of DNA on nanoparticles for high-efficiency molecular transport in cellular imaging and drug delivery. , 2015, Angewandte Chemie.

[234]  Zhen Gu,et al.  ATP-responsive DNA-graphene hybrid nanoaggregates for anticancer drug delivery. , 2015, Biomaterials.

[235]  Antti-Pekka Eskelinen,et al.  Virus-encapsulated DNA origami nanostructures for cellular delivery. , 2014, Nano letters.

[236]  N. Kadowaki,et al.  Efficient delivery of immunostimulatory DNA to mouse and human immune cells through the construction of polypod-like structured DNA. , 2014, Nanomedicine : nanotechnology, biology, and medicine.

[237]  Shawn M. Douglas,et al.  DNA-nanotube-induced alignment of membrane proteins for NMR structure determination , 2007, Proceedings of the National Academy of Sciences.

[238]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[239]  C. Mao,et al.  Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra , 2008, Nature.

[240]  Michael M. Kozlov,et al.  How proteins produce cellular membrane curvature , 2006, Nature Reviews Molecular Cell Biology.

[241]  Jian Zhang,et al.  DNA-nanoparticle superlattices formed from anisotropic building blocks. , 2010, Nature materials.

[242]  T. Tuschl,et al.  Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells , 2001, Nature.

[243]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[244]  M. Manoharan,et al.  RNAi therapeutics: a potential new class of pharmaceutical drugs , 2006, Nature chemical biology.

[245]  Chin-Lin Guo,et al.  Computational design of co-assembling protein–DNA nanowires , 2015, Nature.

[246]  H. Bermudez,et al.  Aptamer-Targeted DNA Nanostructures for Therapeutic Delivery , 2014, Molecular pharmaceutics.

[247]  Colin D. Medley,et al.  Molecular engineering of DNA: molecular beacons. , 2009, Angewandte Chemie.

[248]  Hao Yan,et al.  Challenges and opportunities for structural DNA nanotechnology. , 2011, Nature nanotechnology.

[249]  C. Fan,et al.  Polyvalent immunostimulatory nanoagents with self-assembled CpG oligonucleotide-conjugated gold nanoparticles. , 2012, Angewandte Chemie.

[250]  C. Mirkin,et al.  Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer approach. , 2020, Nature nanotechnology.

[251]  M. Wasielewski,et al.  Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. , 2009, Accounts of chemical research.

[252]  P. Yin,et al.  Complex shapes self-assembled from single-stranded DNA tiles , 2012, Nature.

[253]  Hao Yan,et al.  Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. , 2008, Nature nanotechnology.

[254]  B. Nordén,et al.  Controlling and monitoring orientation of DNA nanoconstructs on lipid surfaces. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[255]  Georg Seelig,et al.  Computing in mammalian cells with nucleic acid strand exchange , 2015, Nature nanotechnology.

[256]  D. Klinman Immunotherapeutic uses of CpG oligodeoxynucleotides , 2004, Nature Reviews Immunology.

[257]  N. Seeman,et al.  A robust DNA mechanical device controlled by hybridization topology , 2002, Nature.

[258]  N. Kotov,et al.  Multifunctional magnetoplasmonic nanoparticle assemblies for cancer therapy and diagnostics (theranostics). , 2010, Macromolecular rapid communications.

[259]  Yoko Harada,et al.  An unnatural hydrophobic base pair system: site-specific incorporation of nucleotide analogs into DNA and RNA , 2006, Nature Methods.

[260]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[261]  S. Howorka,et al.  Membrane-Spanning DNA Nanopores with Cytotoxic Effect , 2014, Angewandte Chemie.

[262]  Björn Högberg,et al.  DNA origami delivery system for cancer therapy with tunable release properties. , 2012, ACS nano.

[263]  Chao Wang,et al.  Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. , 2015, Angewandte Chemie.

[264]  I. Willner,et al.  Functional nucleic acid nanostructures and DNA machines. , 2010, Current opinion in biotechnology.

[265]  Jiye Shi,et al.  Scaffolded biosensors with designed DNA nanostructures , 2013 .

[266]  Sung Yong Park,et al.  DNA-programmable nanoparticle crystallization , 2008, Nature.

[267]  G. Hortobagyi,et al.  Anthracyclines in the Treatment of Cancer , 2012, Drugs.

[268]  H. Sleiman,et al.  DNA nanostructure serum stability: greater than the sum of its parts. , 2013, Chemical communications.

[269]  Tim Liedl,et al.  DNA-Tile Structures Induce Ionic Currents through Lipid Membranes. , 2015, Nano letters.

[270]  H. Garg,et al.  Strategies for targeted nonviral delivery of siRNAs in vivo. , 2009, Trends in molecular medicine.

[271]  T. Park,et al.  Multimeric small interfering ribonucleic acid for highly efficient sequence-specific gene silencing. , 2010, Nature materials.

[272]  Steven A. Benner,et al.  Structural basis for a six nucleotide genetic alphabet. , 2015, Journal of the American Chemical Society.

[273]  A. Aderem,et al.  Mechanisms of phagocytosis in macrophages. , 1999, Annual review of immunology.

[274]  Harvey T. McMahon,et al.  Molecular mechanism and physiological functions of clathrin-mediated endocytosis , 2011, Nature Reviews Molecular Cell Biology.

[275]  Jiye Shi,et al.  Smart Drug Delivery Nanocarriers with Self‐Assembled DNA Nanostructures , 2013, Advanced materials.

[276]  C. Fan,et al.  Ultrasensitive IgG quantification using DNA nano-pyramids , 2014 .

[277]  Yang Liu,et al.  High-speed DNA-based rolling motors powered by RNase H , 2015, Nature nanotechnology.

[278]  Daniel G. Anderson,et al.  Knocking down barriers: advances in siRNA delivery , 2009, Nature Reviews Drug Discovery.

[279]  H. Dietz,et al.  Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components , 2015, Science.

[280]  T. G. Martin,et al.  Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures , 2012, Science.

[281]  Chad A Mirkin,et al.  Asymmetric functionalization of gold nanoparticles with oligonucleotides. , 2006, Journal of the American Chemical Society.

[282]  Friedrich C Simmel,et al.  Hydrophobic actuation of a DNA origami bilayer structure. , 2014, Angewandte Chemie.

[283]  J. Rothman,et al.  Accelerating SNARE-Mediated Membrane Fusion by DNA-Lipid Tethers. , 2015, Angewandte Chemie.

[284]  Chad A Mirkin,et al.  Polyvalent DNA nanoparticle conjugates stabilize nucleic acids. , 2020, Nano letters.

[285]  Fred Russell Kramer,et al.  Multicolor molecular beacons for allele discrimination , 1998, Nature Biotechnology.

[286]  William M. Shih,et al.  Addressing the Instability of DNA Nanostructures in Tissue Culture , 2014, ACS nano.

[287]  Joseph Park,et al.  Consecutive targetable smart nanoprobe for molecular recognition of cytoplasmic microRNA in metastatic breast cancer. , 2012, ACS nano.

[288]  Chad A Mirkin,et al.  Spherical nucleic acids. , 2012, Journal of the American Chemical Society.

[289]  Hanadi F Sleiman,et al.  Rolling circle amplification-templated DNA nanotubes show increased stability and cell penetration ability. , 2012, Journal of the American Chemical Society.

[290]  Joseph L. Goldstein,et al.  Coated pits, coated vesicles, and receptor-mediated endocytosis , 1979, Nature.

[291]  Martha A Grover,et al.  Folding and imaging of DNA nanostructures in anhydrous and hydrated deep-eutectic solvents. , 2015, Angewandte Chemie.

[292]  Shubiao Zhang,et al.  Toxicity of cationic lipids and cationic polymers in gene delivery. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[293]  Chunhai Fan,et al.  A DNA-based system for selecting and displaying the combined result of two input variables , 2015, Nature Communications.

[294]  C. Mirkin,et al.  Regulating immune response using polyvalent nucleic acid-gold nanoparticle conjugates. , 2009, Molecular pharmaceutics.

[295]  Hai-Jun Su,et al.  Programmable motion of DNA origami mechanisms , 2015, Proceedings of the National Academy of Sciences.

[296]  Maode Lai,et al.  Binding-Induced DNA Nanomachines Triggered by Proteins and Nucleic Acids. , 2015, Angewandte Chemie.

[297]  Joseph M. DeSimone,et al.  Strategies in the design of nanoparticles for therapeutic applications , 2010, Nature Reviews Drug Discovery.

[298]  N. Seeman,et al.  An immobile nucleic acid junction constructed from oligonucleotides , 1983, Nature.

[299]  A. Lane,et al.  Stability and kinetics of G-quadruplex structures , 2008, Nucleic acids research.

[300]  Philip Tinnefeld,et al.  DNA Origami Nanoantennas with over 5000-fold Fluorescence Enhancement and Single-Molecule Detection at 25 μM. , 2015, Nano letters.