Dissecting the conformational complexity and mechanism of a bacterial heme transporter

[1]  G. Hummer,et al.  Evidence for a trap-and-flip mechanism in a proton-dependent lipid transporter , 2021, Nature Communications.

[2]  H. Schwalbe,et al.  Mechanistic and structural diversity between cytochrome bd isoforms of Escherichia coli , 2021, Proceedings of the National Academy of Sciences.

[3]  S. Safarian,et al.  Cryo-EM structures of intermediates suggest an alternative catalytic reaction cycle for cytochrome c oxidase , 2021, Nature Communications.

[4]  Aurélien F. A. Moumbock,et al.  Structure of Escherichia coli cytochrome bd-II type oxidase with bound aurachin D , 2021, Nature Communications.

[5]  G. Hummer,et al.  The cryo-EM structure of the bd oxidase from M. tuberculosis reveals a unique structural framework and enables rational drug design to combat TB , 2021, Nature Communications.

[6]  L. Guddat,et al.  Cryo-EM structure of mycobacterial cytochrome bd reveals two oxygen access channels , 2021, Nature Communications.

[7]  M. Lienemann Molecular mechanisms of electron transfer employed by native proteins and biological-inorganic hybrid systems , 2020, Computational and structural biotechnology journal.

[8]  T. Stockner,et al.  The role of the degenerate nucleotide binding site in type I ABC exporters , 2020, FEBS letters.

[9]  E. Tajkhorshid,et al.  Structural and functional diversity calls for a new classification of ABC transporters , 2020, FEBS letters.

[10]  E. Nudler,et al.  CydDC functions as a cytoplasmic cystine reductase to sensitize Escherichia coli to oxidative stress and aminoglycosides , 2020, Proceedings of the National Academy of Sciences.

[11]  Li Zhang Heme Biology , 2020 .

[12]  J. Kowal,et al.  Structure of the human lipid exporter ABCB4 in a lipid environment , 2019, Nature Structural & Molecular Biology.

[13]  D. Bald,et al.  Cytochrome bd in Mycobacterium tuberculosis: A respiratory chain protein involved in the defense against antibacterials. , 2019, Progress in biophysics and molecular biology.

[14]  B. Böttcher,et al.  Homologous bd oxidases share the same architecture but differ in mechanism , 2019, Nature Communications.

[15]  R. Gennis,et al.  Active site rearrangement and structural divergence in prokaryotic respiratory oxidases , 2019, Science.

[16]  G. Hummer,et al.  Conformation space of a heterodimeric ABC exporter under turnover conditions , 2019, Nature.

[17]  G. Hummer,et al.  Inward-facing conformation of a multidrug resistance MATE family transporter , 2019, Proceedings of the National Academy of Sciences.

[18]  Thorsten Wagner,et al.  SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM , 2019, Communications Biology.

[19]  Jue Chen,et al.  Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation , 2018, Science.

[20]  T. Walz,et al.  Structural basis of MsbA-mediated lipopolysaccharide transport , 2017, Nature.

[21]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[22]  A. Maresso,et al.  A dual component heme biosensor that integrates heme transport and synthesis in bacteria. , 2015, Journal of microbiological methods.

[23]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[24]  Kai Zhang,et al.  Gctf: Real-time CTF determination and correction , 2015, bioRxiv.

[25]  Elizabeta Nemeth,et al.  Iron homeostasis in host defence and inflammation , 2015, Nature reviews. Immunology.

[26]  Sunhwan Jo,et al.  CHARMM‐GUI Membrane Builder toward realistic biological membrane simulations , 2014, J. Comput. Chem..

[27]  R. Gennis,et al.  Subunit CydX of Escherichia coli cytochrome bd ubiquinol oxidase is essential for assembly and stability of the di‐heme active site , 2014, FEBS letters.

[28]  Roberto L. Mempin,et al.  Release of extracellular ATP by bacteria during growth , 2013, BMC Microbiology.

[29]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[30]  A. Arutyunyan,et al.  Optical and magneto-optical activity of cytochrome bd from Geobacillus thermodenitrificans. , 2012, Biochimica et biophysica acta.

[31]  M. Hohl,et al.  Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation , 2012, Nature Structural &Molecular Biology.

[32]  H. Michel,et al.  The Structure of cbb3 Cytochrome Oxidase Provides Insights into Proton Pumping , 2010, Science.

[33]  M. Meyerson,et al.  The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP , 2008, Proceedings of the National Academy of Sciences.

[34]  Lutz Schmitt,et al.  The motor domains of ABC-transporters , 2006, Naunyn-Schmiedeberg's Archives of Pharmacology.

[35]  R. Poole,et al.  Membrane topology and mutational analysis of Escherichia coli CydDC, an ABC-type cysteine exporter required for cytochrome assembly. , 2004, Microbiology.

[36]  R. Huber,et al.  Structure and mechanism of the aberrant ba3‐cytochrome c oxidase from Thermus thermophilus , 2000, The EMBO journal.

[37]  N. Andrews Iron metabolism: iron deficiency and iron overload. , 2000, Annual review of genomics and human genetics.

[38]  B. Goldman,et al.  Use of heme reporters for studies of cytochrome biosynthesis and heme transport , 1996, Journal of bacteriology.

[39]  B. Goldman,et al.  The temperature-sensitive growth and survival phenotypes of Escherichia coli cydDC and cydAB strains are due to deficiencies in cytochrome bd and are corrected by exogenous catalase and reducing agents , 1996, Journal of bacteriology.

[40]  P. Lindley,et al.  Iron in biology: a structural viewpoint , 1996 .

[41]  G. Wu,et al.  The cydD gene product, component of a heterodimeric ABC transporter, is required for assembly of periplasmic cytochrome c and of cytochrome bd in Escherichia coli. , 1994, FEMS microbiology letters.

[42]  G. Cox,et al.  Cytochrome bd biosynthesis in Escherichia coli: the sequences of the cydC and cydD genes suggest that they encode the components of an ABC membrane transporter , 1993, Molecular microbiology.

[43]  H. Williams,et al.  Investigation of the role of the cydD gene product in production of a functional cytochrome d oxidase in Escherichia coli. , 1993, FEMS microbiology letters.

[44]  R. Gennis,et al.  Identification of the cydC locus required for expression of the functional form of the cytochrome d terminal oxidase complex in Escherichia coli , 1987, Journal of bacteriology.