Automatic Annotation of Timbre Variation for Musical Instruments

This paper proposes a preprocessing technique for the automatic transcription of performances produced by a musical instrument (or other sound source) capable of timbre variations. Voice recognition techniques will be exploited to gather information about timbre, then a clustering approach will be used to reduce data cardinality, and, finally, data dimensionality will be further reduced using multi-dimensional scaling to create labels as points in a data-driven timbre-space. A graphical visualization of the achieved results will be implemented in order to verify the achievement of the initial requirements. A MATLAB toolkit performing the operations described in this paper is publicly available to test the e↵ectiveness of the proposed approach.

[1]  Mark D. Plumbley,et al.  Automatic Music Transcription and Audio Source Separation , 2002, Cybern. Syst..

[2]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .

[3]  Gaël Richard,et al.  Automatic transcription of drum loops , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[4]  Matija Marolt,et al.  A connectionist approach to automatic transcription of polyphonic piano music , 2004, IEEE Transactions on Multimedia.

[5]  Anssi Klapuri,et al.  Automatic music transcription: challenges and future directions , 2013, Journal of Intelligent Information Systems.

[6]  Anssi Klapuri,et al.  Accompaniment separation and karaoke application based on automatic melody transcription , 2008, 2008 IEEE International Conference on Multimedia and Expo.

[7]  Simon Dixon,et al.  10 th International Society for Music Information Retrieval Conference ( ISMIR 2009 ) USING MUSICAL STRUCTURE TO ENHANCE AUTOMATIC CHORD TRANSCRIPTION , 2009 .

[8]  Xavier Serra,et al.  A sound analysis/synthesis system based on a deterministic plus stochastic decomposition , 1990 .

[9]  Gaël Richard,et al.  Automatic transcription of drum sequences using audiovisual features , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[10]  Dan Barry,et al.  Drum Source Separation using Percussive Feature Detection and Spectral Modulation , 2005 .

[11]  Anssi Klapuri,et al.  Automatic Music Transcription: Breaking the Glass Ceiling , 2012, ISMIR.

[12]  Davide Andrea Mauro,et al.  Continuous Brightness Estimation (CoBE): Implementation and its Possible Applications , 2013, CMMR 2013.

[13]  Anssi Klapuri,et al.  Automatic Transcription of Melody, Bass Line, and Chords in Polyphonic Music , 2008, Computer Music Journal.

[14]  Christopher Raphael,et al.  Automatic Transcription of Piano Music , 2002, ISMIR.

[15]  Julius O. Smith,et al.  Spectral modeling synthesis: A sound analysis/synthesis based on a deterministic plus stochastic decomposition , 1990 .

[16]  Amaury Hazan Towards automatic transcription of expressive oral percussive performances , 2005, IUI '05.

[17]  Keith D. Martin,et al.  Automatic Transcription of Simple Polyphonic Music: Robust Front End Processing , 1999 .

[18]  François Pachet,et al.  Improving Timbre Similarity : How high’s the sky ? , 2004 .