Conversion of methanol with C5–C6 hydrocarbons into aromatics in a two-stage fluidized bed reactor

[1]  J. Nagy,et al.  Elucidation of the mechanism of conversion of methanol and ethanol to hydrocarbons on a new type of synthetic zeolite , 1978 .

[2]  R. Levanmao Xylene isomer diffusivity and shape selectivity in ZSM zeolites*1 , 1983 .

[3]  Study on the Aromatization of Several Cycloalkanes Over ZnZSM-5 , 1991 .

[4]  J. Lercher,et al.  Monomolecular conversion of light alkanes over H-ZSM-5 , 1995 .

[5]  Yoshihiro Inoue,et al.  Selective conversion of methanol into aromatic hydrocarbons over silver-exchanged ZSM-5 zeolites , 1995 .

[6]  N. Gnep,et al.  Aromatization of propane over GaHMFI catalysts. Reaction scheme, nature of the dehydrogenating species and mode of coke formation , 1996 .

[7]  N. Gnep,et al.  Mechanism of short-chain alkane transformation over protonic zeolites. Alkylation, disproportionation and aromatization , 1996 .

[8]  U. Shanker,et al.  Reaction pathways for the aromatization of paraffins in the presence of H-ZSM-5 and Zn/H-ZSM-5 , 1996 .

[9]  P. Mériaudeau,et al.  Dehydrocyclization of Alkanes Over Zeolite-Supported Metal Catalysts: Monofunctional or Bifunctional Route , 1997 .

[10]  T. Tatsumi,et al.  Reforming of hexane with Pt/zeolite catalysts , 1997 .

[11]  Jong‐Ho Kim,et al.  Generation of Shape-Selectivity ofp-Xylene Formation in the Synthesized ZSM-5 Zeolites , 1998 .

[12]  Andreas Martin,et al.  CMHC: coupled methanol hydrocarbon cracking: Formation of lower olefins from methanol and hydrocarbons over modified zeolites , 1999 .

[13]  Conversion of Light Naphtha to Aromatic Hydrocarbons (Part 4) , 2001 .

[14]  G. Hutchings,et al.  Methanol to hydrocarbons: enhanced aromatic formation using a composite Ga2O3-H-ZSM-5 catalyst. , 2001, Chemical communications.

[15]  K. Pant,et al.  Catalytic conversion of methanol to gasoline range hydrocarbons , 2004 .

[16]  F. Wei,et al.  Enhanced production of carbon nanotubes: combination of catalyst reduction and methane decomposition , 2004 .

[17]  Liu Tang,et al.  Production of hydrogen and carbon nanotubes from methane decomposition in a two-stage fluidized bed reactor , 2004 .

[18]  Juan C. Yori,et al.  Pt-Re-Sn/Al2O3 trimetallic catalysts for naphtha reforming processes without presulfiding step , 2005 .

[19]  Weizhong Qian,et al.  Gaseous catalytic hydrogenation of nitrobenzene to aniline in a two-stage fluidized bed reactor , 2005 .

[20]  M. Ali,et al.  An Appraisal of Hydrocarbons Conversion Reactions During Naphtha Reforming Process , 2007 .

[21]  F. Bonino,et al.  Conversion of methanol to hydrocarbons over zeolite H-ZSM-5 : On the origin of the olefinic species , 2007 .

[22]  F. Wei,et al.  In situ synthesis of SAPO-34 crystals grown onto α-Al2O3 sphere supports as the catalyst for the fluidized bed conversion of dimethyl ether to olefins , 2008 .

[23]  D. McCann,et al.  A complete catalytic cycle for supramolecular methanol-to-olefins conversion by linking theory with experiment. , 2008, Angewandte Chemie.

[24]  F. Wei,et al.  Gas-Phase Catalytic Hydrochlorination of Acetylene in a Two-Stage Fluidized-Bed Reactor , 2009 .

[25]  骞伟中,et al.  甲醇芳构化反应中Ag/ZSM-5催化剂的失活特性 , 2010 .

[26]  Catalytic activity of Pt‐Re‐Pb/Al2O3 naphtha reforming catalysts , 2011 .

[27]  Landong Li,et al.  Methanol-to-Olefin Conversion on Silicoaluminophosphate Catalysts: Effect of Brønsted Acid Sites and Framework Structures , 2011 .

[28]  G. Hutchings,et al.  Reactivity of Ga2O3 Clusters on Zeolite ZSM-5 for the Conversion of Methanol to Aromatics , 2012, Catalysis Letters.

[29]  E. Hensen,et al.  Structure and Reactivity of Zn-Modified ZSM-5 Zeolites: The Importance of Clustered Cationic Zn Complexes , 2012 .

[30]  K. Lillerud,et al.  Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. , 2012, Angewandte Chemie.

[31]  Z. Liao,et al.  New Cytotoxic Triterpenoids from the Aerial Parts of Euphorbia sieboldiana , 2013 .

[32]  F. Wei,et al.  Fabrication of c-axis oriented ZSM-5 hollow fibers based on an in situ solid-solid transformation mechanism. , 2013, Journal of the American Chemical Society.

[33]  Wang Tong,et al.  Influence of Catalyst Acidity on Dealkylation, Isomerization and Alkylation in MTA Process , 2013 .

[34]  Aditya Bhan,et al.  Mechanism of the Catalytic Conversion of Methanol to Hydrocarbons , 2013 .

[35]  F. Wei,et al.  Conversion of methanol to aromatics in fluidized bed reactor , 2014 .

[36]  F. Wei,et al.  Atmospheric pressure synthesis of nanosized ZSM-5 with enhanced catalytic performance for methanol to aromatics reaction , 2014 .

[37]  F. Wei,et al.  Centrifugation-free and high yield synthesis of nanosized H-ZSM-5 and its structure-guided aromatization of methanol to 1,2,4-trimethylbenzene , 2014 .

[38]  F. Wei,et al.  Increasing para-Xylene Selectivity in Making Aromatics from Methanol with a Surface-Modified Zn/P/ZSM-5 Catalyst , 2015 .