Synthesis of an alternating thienylenevinylene-benzothiadiazole copolymer with high hole mobility for use in organic solar cells

Abstract A new thienylenevinylene–benzothiadiazole copolymer, poly{1,2-(E)-bis[2-(5-bromo-3-dodecyl-2-thienyl)-5-thienyl]ethene-2,1,3-benzothiadiazole} (PETVTBT), was synthesized and characterized for potential use in solar cells. The polymer had broad absorption over the entire visible region and a low band gap of 1.57 eV. In addition, the polymer had a relatively low HOMO level of about 5.1 eV. Although PETVTBT was a donor–acceptor-type copolymer, the hole mobility reached 0.025 cm2/V s using field-effect transistors. Bulk-heterojunction solar cells that used a PETVTBT:PC[71]BM blend as the active layer showed a power conversion efficiency of 1.0% under a simulated AM 1.5 G solar irradiation at 100 mW/cm2.

[1]  Xiaoniu Yang,et al.  Relating the Morphology of Poly(p‐phenylene vinylene)/Methanofullerene Blends to Solar‐Cell Performance , 2004 .

[2]  P. Sonar,et al.  High-Mobility Organic Thin Film Transistors Based on Benzothiadiazole-Sandwiched Dihexylquaterthiophenes , 2008 .

[3]  Christoph J. Brabec,et al.  High Photovoltaic Performance of a Low‐Bandgap Polymer , 2006 .

[4]  G. Hadziioannou,et al.  A [3,2-b]thienothiophene-alt-benzothiadiazole copolymer for photovoltaic applications: design, synthesis, material characterization and device performances , 2009 .

[5]  F. Krebs,et al.  A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies , 2009 .

[6]  D. Bradley,et al.  Formation of a Ground‐State Charge‐Transfer Complex in Polyfluorene//[6,6]‐Phenyl‐C61 Butyric Acid Methyl Ester (PCBM) Blend Films and Its Role in the Function of Polymer/PCBM Solar Cells , 2007 .

[7]  M. Turbiez,et al.  High‐Mobility Ambipolar Near‐Infrared Light‐Emitting Polymer Field‐Effect Transistors , 2008 .

[8]  Yang Yang,et al.  Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. , 2008, Journal of the American Chemical Society.

[9]  Geert Brocks,et al.  Small Band Gap Semiconducting Polymers Made from Dye Molecules: Polysquaraines , 1996 .

[10]  F. Krebs,et al.  Bulk heterojunctions based on a low band gap copolymer of thiophene and benzothiadiazole , 2007 .

[11]  Mario Leclerc,et al.  A Low‐Bandgap Poly(2,7‐Carbazole) Derivative for Use in High‐Performance Solar Cells , 2007 .

[12]  J. Tour,et al.  Synthesis and UV-visible properties of soluble α-thiophene oligomers. Monomer to octamer , 1992 .

[13]  J. Haw,et al.  Low band-gap polymers based on quinoxaline derivatives and fused thiophene as donor materials for high efficiency bulk-heterojunction photovoltaic cells , 2009 .

[14]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[15]  Yong Cao,et al.  Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. , 2009, Accounts of chemical research.

[16]  Tian-An Chen,et al.  Regiocontrolled Synthesis of Poly(3-alkylthiophenes) Mediated by Rieke Zinc: Their Characterization and Solid-State Properties , 1995 .

[17]  H. Sirringhaus,et al.  Patterning of Solution‐Processed Semiconducting Polymers in High‐Mobility Thin‐Film Transistors by Physical Delamination , 2009 .

[18]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[19]  Zhenan Bao,et al.  Transistor and solar cell performance of donor–acceptor low bandgap copolymers bearing an acenaphtho[1,2-b]thieno[3,4-e]pyrazine (ACTP) motif , 2009 .

[20]  Zhiyuan Xie,et al.  Novel NIR-absorbing conjugated polymers for efficient polymer solar cells: effect of alkyl chain length on device performance , 2009 .

[21]  Hoosung Lee,et al.  Efficient poly(p-phenylenevinylene) derivative with 1,2-diphenyl-2'-cyanoethene for single layer light-emitting diodes , 2003 .

[22]  In Hwan Jung,et al.  Synthesis and characterization of indeno[1,2-b]fluorene-based low bandgap copolymers for photovoltaic cells , 2010 .

[23]  Tae-Woo Lee,et al.  Three‐Dimensional Bulk Heterojunction Morphology for Achieving High Internal Quantum Efficiency in Polymer Solar Cells , 2009 .

[24]  Soo‐Hyoung Lee,et al.  Polymer solar cells based on inkjet-printed PEDOT:PSS layer , 2009 .

[25]  K. Hashimoto,et al.  Synthesis and Photovoltaic Properties of Diketopyrrolopyrrole-Based Donor−Acceptor Copolymers , 2009 .

[26]  Jean Manca,et al.  The Relation Between Open‐Circuit Voltage and the Onset of Photocurrent Generation by Charge‐Transfer Absorption in Polymer : Fullerene Bulk Heterojunction Solar Cells , 2008 .

[27]  M. Leclerc,et al.  A High-Mobility Low-Bandgap Poly(2,7-carbazole) Derivative for Photovoltaic Applications , 2009 .

[28]  M. Loi,et al.  Charge Transfer Excitons in Bulk Heterojunctions of a Polyfluorene Copolymer and a Fullerene Derivative , 2007 .

[29]  K. Müllen,et al.  Field-effect transistors based on a benzothiadiazole-cyclopentadithiophene copolymer. , 2007, Journal of the American Chemical Society.

[30]  Yong Cao,et al.  Deep-Red Electroluminescent Polymers: Synthesis and Characterization of New Low-Band-Gap Conjugated Copolymers for Light-Emitting Diodes and Photovoltaic Devices , 2005 .

[31]  F. Krebs,et al.  Substituted 2,1,3-Benzothiadiazole- And Thiophene-Based Polymers for Solar Cells − Introducing a New Thermocleavable Precursor , 2009 .

[32]  J. Serrano,et al.  Tris(triazolyl)triazine via click-chemistry: a C3 electron-deficient core with liquid crystalline and luminescent properties. , 2010, Organic letters.

[33]  In Hwan Jung,et al.  Synthesis and characterization of cyclopentadithiophene-based low bandgap copolymers containing electron-deficient benzoselenadiazole derivatives for photovoltaic devices , 2010 .

[34]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[35]  Yong‐Young Noh,et al.  A New Poly(thienylenevinylene) Derivative with High Mobility and Oxidative Stability for Organic Thin‐Film Transistors and Solar Cells , 2009 .