How many trials are required for parameter estimation in diffusion modeling? A comparison of different optimization criteria

Diffusion models (Ratcliff, 1978) make it possible to identify and separate different cognitive processes underlying responses in binary decision tasks (e.g., the speed of information accumulation vs. the degree of response conservatism). This becomes possible because of the high degree of information utilization involved. Not only mean response times or error rates are used for the parameter estimation, but also the response time distributions of both correct and error responses. In a series of simulation studies, the efficiency and robustness of parameter recovery were compared for models differing in complexity (i.e., in numbers of free parameters) and trial numbers (ranging from 24 to 5,000) using three different optimization criteria (maximum likelihood, Kolmogorov–Smirnov, and chi-square) that are all implemented in the latest version of fast-dm (Voss, Voss, & Lerche, 2015). The results revealed that maximum likelihood is superior for uncontaminated data, but in the presence of fast contaminants, Kolmogorov–Smirnov outperforms the other two methods. For most conditions, chi-square-based parameter estimations lead to less precise results than the other optimization criteria. The performance of the fast-dm methods was compared to the EZ approach (Wagenmakers, van der Maas, & Grasman, 2007) and to a Bayesian implementation (Wiecki, Sofer, & Frank, 2013). Recommendations for trial numbers are derived from the results for models of different complexities. Interestingly, under certain conditions even small numbers of trials (N < 100) are sufficient for robust parameter estimation.

[1]  Francis Tuerlinckx,et al.  Fitting the ratcliff diffusion model to experimental data , 2007, Psychonomic bulletin & review.

[2]  E. Wagenmakers,et al.  The Speed-Accuracy Tradeoff in the Elderly Brain: A Structural Model-Based Approach , 2011, The Journal of Neuroscience.

[3]  Roger Ratcliff,et al.  Anxiety enhances threat processing without competition among multiple inputs: a diffusion model analysis. , 2010, Emotion.

[4]  Andreas Voss,et al.  Fast-dm: A free program for efficient diffusion model analysis , 2007, Behavior research methods.

[5]  A. Voss,et al.  Diffusion models in experimental psychology: a practical introduction. , 2013, Experimental psychology.

[6]  R. Ratcliff,et al.  Sleep deprivation affects multiple distinct cognitive processes , 2009, Psychonomic bulletin & review.

[7]  A. Voss,et al.  Retest reliability of the parameters of the Ratcliff diffusion model , 2017, Psychological research.

[8]  A. Heathcote,et al.  Reply to Speckman and Rouder: A theoretical basis for QML , 2004 .

[9]  A. Voss,et al.  Interpreting the parameters of the diffusion model: An empirical validation , 2004, Memory & cognition.

[10]  Thomas V. Wiecki,et al.  HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python , 2013, Front. Neuroinform..

[11]  R. Ratcliff,et al.  What cognitive processes drive response biases? A diffusion model analysis , 2011, Judgment and Decision Making.

[12]  Han L. J. van der Maas,et al.  On the mean and variance of response times under the diffusion model with an application to parameter estimation , 2009 .

[13]  Francis Tuerlinckx,et al.  Diffusion model analysis with MATLAB: A DMAT primer , 2008, Behavior research methods.

[14]  Jacob Cohen Statistical Power Analysis for the Behavioral Sciences , 1969, The SAGE Encyclopedia of Research Design.

[15]  Peter Kuppens,et al.  A diffusion model account of the relationship between the emotional flanker task and rumination and depression. , 2013, Emotion.

[16]  R. Ratcliff,et al.  Estimating parameters of the diffusion model: Approaches to dealing with contaminant reaction times and parameter variability , 2002, Psychonomic bulletin & review.

[17]  Andrea Schankin,et al.  Decomposing the relationship between mental speed and mental abilities , 2015 .

[18]  R. Ratcliff,et al.  A diffusion model analysis of the effects of aging in the lexical-decision task. , 2004, Psychology and aging.

[19]  U. Bayen,et al.  What can the diffusion model tell us about prospective memory? , 2011, Canadian journal of experimental psychology = Revue canadienne de psychologie experimentale.

[20]  Eric-Jan Wagenmakers,et al.  An EZ-diffusion model for response time and accuracy , 2007, Psychonomic bulletin & review.

[21]  Arndt Bröder,et al.  Empirical validation of the diffusion model for recognition memory and a comparison of parameter-estimation methods , 2015, Psychological research.

[22]  Stephane Champely,et al.  Basic Functions for Power Analysis , 2015 .

[23]  Jeffrey N. Rouder,et al.  Modeling Response Times for Two-Choice Decisions , 1998 .

[24]  Andreas Voss,et al.  Decomposing task-switching costs with the diffusion model. , 2012, Journal of experimental psychology. Human perception and performance.

[25]  Robert W. Zmud,et al.  An Empirical Validation of , 1987 .

[26]  Andreas Voss,et al.  A diffusion model analysis of adult age differences in episodic and semantic long-term memory retrieval. , 2006, Journal of experimental psychology. Learning, memory, and cognition.

[27]  Scott D. Brown,et al.  The simplest complete model of choice response time: Linear ballistic accumulation , 2008, Cognitive Psychology.

[28]  P. Lachenbruch Statistical Power Analysis for the Behavioral Sciences (2nd ed.) , 1989 .

[29]  Richard G. Swensson,et al.  The elusive tradeoff: Speed vs accuracy in visual discrimination tasks , 1972 .

[30]  Jeffrey N Rouder,et al.  A comment on Heathcote, Brown, and Mewhort’s QMLE method for response time distributions , 2004, Psychonomic bulletin & review.

[31]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[32]  Andreas Voss,et al.  A fast numerical algorithm for the estimation of diffusion model parameters , 2008 .

[33]  Karl Christoph Klauer,et al.  Separating response-execution bias from decision bias: arguments for an additional parameter in Ratcliff's diffusion model. , 2010, The British journal of mathematical and statistical psychology.

[34]  R. Ratcliff,et al.  Aging and Predicting Inferences: A Diffusion Model Analysis. , 2013, Journal of memory and language.

[35]  Roger Ratcliff,et al.  Individual Differences and Fitting Methods for the Two-Choice Diffusion Model of Decision Making. , 2015, Decision.

[36]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[37]  Andreas Voss,et al.  Assessing cognitive processes with diffusion model analyses: a tutorial based on fast-dm-30 , 2015, Front. Psychol..

[38]  Roger Ratcliff,et al.  The Diffusion Decision Model: Theory and Data for Two-Choice Decision Tasks , 2008, Neural Computation.

[39]  M. Lee,et al.  Hierarchical diffusion models for two-choice response times. , 2011, Psychological methods.

[40]  Daniel R. Little,et al.  Logical-rule models of classification response times: a synthesis of mental-architecture, random-walk, and decision-bound approaches. , 2010, Psychological review.

[41]  Roger Ratcliff,et al.  A Diffusion Model Analysis of Episodic Recognition in Preclinical Individuals with a Family History for Alzheimer's Disease: the Adult Children Study Diffusion Model Analysis of Episodic Recognition in Preclinical Individuals with a Family , 2022 .

[42]  R. Ratcliff,et al.  A Diffusion Model Analysis of the Effects of Aging on Recognition Memory Journal of Memory and Language , 2003 .

[43]  Roger Ratcliff,et al.  Effects of aging and IQ on item and associative memory. , 2011, Journal of experimental psychology. General.

[44]  Jan Rummel,et al.  A diffusion model analysis of task interference effects in prospective memory , 2012, Memory & cognition.

[45]  Andreas Voss,et al.  Cognitive processes in associative and categorical priming: a diffusion model analysis. , 2013, Journal of experimental psychology. General.

[46]  Karl Christoph Klauer,et al.  Process components of the Implicit Association Test: a diffusion-model analysis. , 2007, Journal of personality and social psychology.

[47]  R. Ratcliff,et al.  A Diffusion Model Account of Criterion Shifts in the Lexical Decision Task. , 2008, Journal of memory and language.

[48]  Andreas Voss,et al.  Social Influence and Perceptual Decision Making , 2014, Personality & social psychology bulletin.

[49]  Daragh E. Sibley,et al.  Individual Differences in Visual Word Recognition: Insights from the English Lexicon Project , 2012 .

[50]  David A Balota,et al.  Additive and interactive effects in semantic priming: Isolating lexical and decision processes in the lexical decision task. , 2013, Journal of experimental psychology. Learning, memory, and cognition.

[51]  Corey White,et al.  Please Scroll down for Article Cognition & Emotion Dysphoria and Memory for Emotional Material: a Diffusion-model Analysis Dysphoria and Memory for Emotional Material: a Diffusion-model Analysis , 2022 .

[52]  Roger Ratcliff,et al.  The EZ diffusion method: Too EZ? , 2008, Psychonomic bulletin & review.

[53]  E. Wagenmakers,et al.  EZ does it! Extensions of the EZ-diffusion model , 2008, Psychonomic bulletin & review.

[54]  Klaus Oberauer,et al.  How to use the diffusion model: Parameter recovery of three methods: EZ, fast-dm, and DMAT , 2009 .

[55]  Roger Ratcliff,et al.  Individual differences, aging, and IQ in two-choice tasks , 2010, Cognitive Psychology.

[56]  Andreas Voss,et al.  Components of task switching: a closer look at task switching and cue switching. , 2014, Acta psychologica.

[57]  Donald Laming,et al.  Information theory of choice-reaction times , 1968 .

[58]  A. Voss,et al.  Interpreting ambiguous stimuli: Separating perceptual and judgmental biases. , 2008 .

[59]  Scott D. Brown,et al.  The overconstraint of response time models: Rethinking the scaling problem , 2009, Psychonomic bulletin & review.

[60]  R. Ratcliff,et al.  Using diffusion models to understand clinical disorders. , 2010, Journal of mathematical psychology.

[61]  Joachim Vandekerckhove,et al.  Extending JAGS: A tutorial on adding custom distributions to JAGS (with a diffusion model example) , 2013, Behavior Research Methods.

[62]  Jan R. Wiersema,et al.  ADHD performance reflects inefficient but not impulsive information processing: a diffusion model analysis. , 2013, Neuropsychology.

[63]  Roger Ratcliff,et al.  A Theory of Memory Retrieval. , 1978 .