Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy – a novel approach

To investigate fundus autofluorescence (FAF) lifetimes in geographic atrophy (GA) with a focus on macular pigment (MP) and foveal sparing.

[1]  C. Curcio,et al.  VISUALIZING RETINAL PIGMENT EPITHELIUM PHENOTYPES IN THE TRANSITION TO GEOGRAPHIC ATROPHY IN AGE-RELATED MACULAR DEGENERATION. , 2016, Retina.

[2]  S. Wolf,et al.  Autofluorescence Lifetimes in Patients With Choroideremia Identify Photoreceptors in Areas With Retinal Pigment Epithelium Atrophy. , 2016, Investigative ophthalmology & visual science.

[3]  Giovanni Staurenghi,et al.  Classification of fundus autofluorescence patterns in early age-related macular disease. , 2005, Investigative ophthalmology & visual science.

[4]  Dietrich Schweitzer,et al.  Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer's disease , 2015, Acta ophthalmologica.

[5]  Christian Simader,et al.  A longitudinal comparison of spectral-domain optical coherence tomography and fundus autofluorescence in geographic atrophy. , 2014, American journal of ophthalmology.

[6]  Lala Ceklic,et al.  Macular atrophy in patients with long‐term anti‐VEGF treatment for neovascular age‐related macular degeneration , 2016, Acta ophthalmologica.

[7]  C K Dorey,et al.  Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects. , 2001, Investigative ophthalmology & visual science.

[8]  Sebastian Wolf,et al.  FUNDUS AUTOFLUORESCENCE LIFETIMES AND CENTRAL SEROUS CHORIORETINOPATHY , 2017, Retina.

[9]  M. Hammer,et al.  Fluorescence lifetime imaging ophthalmoscopy , 2017, Progress in Retinal and Eye Research.

[10]  P. Mitchell,et al.  The Incidence and Progression of Age-Related Macular Degeneration over 15 Years: The Blue Mountains Eye Study. , 2015, Ophthalmology.

[11]  D. Schweitzer,et al.  Fundus autofluorescence lifetimes are increased in non‐proliferative diabetic retinopathy , 2017, Acta ophthalmologica.

[12]  M. Killingsworth,et al.  Evolution of geographic atrophy of the retinal pigment epithelium , 1988, Eye.

[13]  Neil M. Bressler,et al.  Recent approaches to evaluating and monitoring geographic atrophy , 2016, Current opinion in ophthalmology.

[14]  H Schatz,et al.  Atrophic macular degeneration. Rate of spread of geographic atrophy and visual loss. , 1989, Ophthalmology.

[15]  J. S. McCasland,et al.  Metabolic Mapping , 2000, Current protocols in neuroscience.

[16]  Dietrich Schweitzer,et al.  FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye , 2015, PloS one.

[17]  Steffen Schmitz-Valckenberg,et al.  Geographic atrophy: clinical features and potential therapeutic approaches. , 2014, Ophthalmology.

[18]  Sebastian Wolf,et al.  Autofluorescence Lifetimes in Geographic Atrophy in Patients With Age-Related Macular Degeneration. , 2016, Investigative ophthalmology & visual science.

[19]  Dietrich Schweitzer,et al.  Impact of Macular Pigment on Fundus Autofluorescence Lifetimes. , 2015, Investigative ophthalmology & visual science.

[20]  S. Wolf,et al.  Fluorescence Lifetime Imaging in Stargardt Disease: Potential Marker for Disease Progression. , 2016, Investigative ophthalmology & visual science.

[21]  K. Eng,et al.  Ranibizumab in neovascular age-related macular degeneration , 2006, Clinical interventions in aging.

[22]  D. Schweitzer,et al.  Repeatability of Autofluorescence Lifetime Imaging at the Human Fundus in Healthy Volunteers , 2013, Current eye research.

[23]  Dietrich Schweitzer,et al.  Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy , 2017, Acta ophthalmologica.

[24]  C K Dorey,et al.  In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. , 1995, Investigative ophthalmology & visual science.

[25]  Francesco Bandello,et al.  Guidelines for the management of neovascular age-related macular degeneration by the European Society of Retina Specialists (EURETINA) , 2014, British Journal of Ophthalmology.

[26]  Danielle B. Gutierrez,et al.  Quantitative autofluorescence and cell density maps of the human retinal pigment epithelium. , 2014, Investigative ophthalmology & visual science.

[27]  Danielle B. Gutierrez,et al.  Lack of correlation between the spatial distribution of A2E and lipofuscin fluorescence in the human retinal pigment epithelium. , 2013, Investigative ophthalmology & visual science.

[28]  R. Rosen,et al.  Macular pigment in retinal health and disease , 2016, International Journal of Retina and Vitreous.

[29]  J S Sunness,et al.  The natural history of geographic atrophy, the advanced atrophic form of age-related macular degeneration. , 1999, Molecular vision.

[30]  R. Klein,et al.  Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. , 2014, The Lancet. Global health.

[31]  P. Maguire,et al.  Geographic atrophy of the retinal pigment epithelium. , 1986, American journal of ophthalmology.

[32]  Cynthia A Toth,et al.  Secondary analyses of the effects of lutein/zeaxanthin on age-related macular degeneration progression: AREDS2 report No. 3. , 2014, JAMA ophthalmology.

[33]  C. Curcio,et al.  Lipofuscin redistribution and loss accompanied by cytoskeletal stress in retinal pigment epithelium of eyes with age-related macular degeneration. , 2015, Investigative ophthalmology & visual science.

[34]  Martin Hammer,et al.  Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy , 2015, Journal of biomedical optics.

[35]  Thomas Ach,et al.  The Project MACULA Retinal Pigment Epithelium Grading System for Histology and Optical Coherence Tomography in Age-Related Macular Degeneration. , 2015, Investigative ophthalmology & visual science.

[36]  Sebastian Wolf,et al.  Fluorescence lifetime imaging in retinal artery occlusion. , 2015, Investigative ophthalmology & visual science.

[37]  C. Curcio,et al.  Basal linear deposit and large drusen are specific for early age-related maculopathy. , 1999, Archives of ophthalmology.

[38]  S. Sarks,et al.  Drusen patterns predisposing to geographic atrophy of the retinal pigment epithelium. , 1982, Australian journal of ophthalmology.

[39]  D. Schweitzer,et al.  Towards metabolic mapping of the human retina , 2007, Microscopy research and technique.

[40]  Gwénolé Quellec,et al.  Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects. , 2014, Investigative ophthalmology & visual science.

[41]  D. Schweitzer,et al.  In vivo measurement of time-resolved autofluorescence at the human fundus. , 2004, Journal of biomedical optics.

[42]  C Bellman,et al.  Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. , 2001, Investigative ophthalmology & visual science.

[43]  Peter Charbel Issa,et al.  Quantitative Fundus Autofluorescence in Early and Intermediate Age-Related Macular Degeneration. , 2016, JAMA ophthalmology.