Mild solutions to the time fractional Navier-Stokes equations in R-N

Abstract This paper addresses the existence and uniqueness of mild solutions to the Navier–Stokes equations with time fractional differential operator of order α ∈ ( 0 , 1 ) . Several interesting properties about the solution are also highlighted, like regularity and decay rate in Lebesgue spaces, which will depend on the fractional exponent α. Moreover, it is shown that the L p -exponent range, which the solution belongs to, is different from the range for the solution of the classical problem with α = 1 .

[1]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[2]  Anatoly N. Kochubei,et al.  Cauchy problem for fractional diffusion equations , 2003 .

[3]  M. Caputo Vibrations of an infinite viscoelastic layer with a dissipative memory , 1974 .

[4]  Rodrigo Ponce Hölder continuous solutions for fractional differential equations and maximal regularity , 2013 .

[5]  Bruno de Andrade,et al.  Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results , 2015 .

[6]  Hyeong‐Ohk Bae,et al.  Upper and lower bounds of temporal and spatial decays for the Navier–Stokes equations , 2005 .

[7]  Marco Cannone,et al.  A generalization of a theorem by Kato on Navier-Stokes equations , 1997 .

[8]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[9]  A. Pirrotta,et al.  Visco-elastic behavior through fractional calculus: An easier method for best fitting experimental results , 2011 .

[10]  Jigen Peng,et al.  Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives ✩ , 2012 .

[11]  Shaher Momani,et al.  Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method , 2006, Appl. Math. Comput..

[12]  Nagarajan Sukavanam,et al.  Approximate controllability of fractional order semilinear systems with bounded delay , 2012 .

[13]  Marco Cannone,et al.  Ondelettes, paraproduits et navier-stokes , 1995 .

[14]  A. Carpio Large-time behavior in incompressible Navier-Stokes equations , 1996 .

[15]  M. Shinbrot Fractional derivatives of solutions of the Navier-Stokes equations , 1971 .

[16]  Kewei Zhang On Shinbrot’s conjecture for the Navier-Stokes equations , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[17]  N. Engheta On fractional calculus and fractional multipoles in electromagnetism , 1996 .

[18]  Michael Wiegner,et al.  Decay Results for Weak Solutions of the Navier–Stokes Equations on Rn , 1987 .

[19]  Jigen Peng,et al.  A novel characteristic of solution operator for the fractional abstract Cauchy problem , 2012 .

[20]  M. T. Cicero FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .

[21]  Maria E. Schonbek,et al.  L2 decay for weak solutions of the Navier-Stokes equations , 1985 .

[22]  F. Mainardi,et al.  Recent history of fractional calculus , 2011 .

[23]  Yimin Xiao Packing measure of the sample paths of fractional Brownian motion , 1996 .

[24]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[25]  W. Borchers,et al.  AlgebraicL2 decay for Navier-Stokes flows in exterior domains , 1990 .

[26]  Liviu Iulian Palade,et al.  Well posedness of a linearized fractional derivative fluid model , 2011, 1103.3286.

[27]  Moustafa El-Shahed,et al.  On the generalized Navier-Stokes equations , 2004, Appl. Math. Comput..

[28]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[29]  Najeeb Alam Khan,et al.  Analytical Study of Navier-Stokes Equation with Fractional Orders Using He's Homotopy Perturbation and Variational Iteration Methods , 2009 .

[30]  M. Krasnoschok,et al.  On a nonclassical fractional boundary-value problem for the Laplace operator , 2014 .

[31]  Davood Domiri Ganji,et al.  Analytical solution of time‐fractional Navier–Stokes equation in polar coordinate by homotopy perturbation method , 2010 .

[32]  Rong-Nian Wang,et al.  Abstract fractional Cauchy problems with almost sectorial operators , 2012 .

[33]  Takashi Kato,et al.  StrongLp-solutions of the Navier-Stokes equation inRm, with applications to weak solutions , 1984 .

[34]  Yongxiang Li,et al.  Existence of mild solutions for fractional evolution equations with mixed monotone nonlocal conditions , 2013, Zeitschrift für angewandte Mathematik und Physik.

[35]  Carvalho Neto,et al.  Fractional differential equations: a novel study of local and global solutions in Banach spaces , 2013 .

[36]  S. Umarov On fractional Duhamel's principle and its applications , 2010, 1004.2098.

[37]  Elliott H. Lieb,et al.  Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities , 1983 .

[38]  Fred B. Weissler,et al.  The Navier-Stokes initial value problem in Lp , 1980 .