A new computational scheme for the Dirac–Hartree–Fock method employing an efficient integral algorithm

A highly efficient computational scheme for four-component relativistic ab initio molecular orbital (MO) calculations over generally contracted spherical harmonic Gaussian-type spinors (GTSs) is presented. Benchmark calculations for the ground states of the group IB hydrides, MH, and dimers, M2 (M=Cu, Ag, and Au), by the Dirac–Hartree–Fock (DHF) method were performed with a new four-component relativistic ab initio MO program package oriented toward contracted GTSs. The relativistic electron repulsion integrals (ERIs), the major bottleneck in routine DHF calculations, are calculated efficiently employing the fast ERI routine SPHERICA, exploiting the general contraction scheme, and the accompanying coordinate expansion method developed by Ishida. Illustrative calculations clearly show the efficiency of our computational scheme.

[1]  Warren J. Hehre,et al.  Computation of electron repulsion integrals involving contracted Gaussian basis functions , 1978 .

[2]  Enrico Clementi,et al.  Study of the electronic structure of molecules. XXI. Correlation energy corrections as a functional of the Hartree‐Fock density and its application to the hydrides of the second row atoms , 1974 .

[3]  Ishikawa,et al.  Single-Fock-operator method for matrix Dirac-Fock self-consistent-field calculations on open-shell atoms. , 1994, Physical Review A. Atomic, Molecular, and Optical Physics.

[4]  Mohanty,et al.  Fully relativistic calculations for the ground state of the AgH molecule. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[5]  K. Dyall,et al.  Relativistic four‐component multiconfigurational self‐consistent‐field theory for molecules: Formalism , 1996 .

[6]  A. Wachters,et al.  Gaussian Basis Set for Molecular Wavefunctions Containing Third‐Row Atoms , 1970 .

[7]  I. P. Grant,et al.  Application of relativistic theories and quantum electrodynamics to chemical problems , 2000 .

[8]  R. Raffenetti,et al.  General contraction of Gaussian atomic orbitals: Core, valence, polarization, and diffuse basis sets; Molecular integral evaluation , 1973 .

[9]  K. Hirao,et al.  Theoretical study of valence photoelectron spectrum of OsO4: A spin-orbit RESC-CASPT2 study , 2000 .

[10]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .

[11]  Clemens C. J. Roothaan,et al.  New Developments in Molecular Orbital Theory , 1951 .

[12]  C. Stearns,et al.  Mass spectrometric determination of the dissociation energies of AlC2, Al2C2, and AlAuC2. , 1973 .

[13]  A. D. McLean,et al.  RELATIVISTIC EFFECTS ON RE AND DE IN AGH AND AUH FROM ALL-ELECTRON DIRAC HARTREE-FOCK CALCULATIONS , 1982 .

[14]  K. Hirao,et al.  Ionization energies and fine structure splittings of highly correlated systems: Zn, zinc-like ions and copper-like ions , 2000 .

[15]  V. Fock,et al.  Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems , 1930 .

[16]  Pekka Pyykkö,et al.  Relativistic effects in structural chemistry , 1988 .

[17]  E. Clementi,et al.  Dirac-Fock self-consistent field method for closed-shell molecules with kinetic balance and finite nuclear size , 1991 .

[18]  P. Taylor,et al.  All-electron molecular Dirac-Hartree-Fock calculations - The group IV tetrahydrides CH4, SiH4, GeH4, SnH4, and PbH4 , 1991 .

[19]  R. S. Ram,et al.  Fourier Transform Emission Spectroscopy: The Vibration-Rotation Spectrum of CuH , 1985 .

[20]  R. C. Binning,et al.  Effects of basis set contraction in relativistic calculations on neon, argon, and germanium , 1990 .

[21]  Peter M. W. Gill,et al.  The prism algorithm for two-electron integrals , 1991 .

[22]  Kazuhiro Ishida,et al.  New algorithm for electron repulsion integrals oriented to the general contraction scheme , 2000 .

[23]  I. Grant Relativistic self-consistent fields , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[24]  W. C. Ermler,et al.  Abinitio effective core potentials including relativistic effects. V. SCF calculations with ω–ω coupling including results for Au2+, TlH, PbS, and PbSe , 1980 .

[25]  J. Almlöf,et al.  Principles for a direct SCF approach to LICAO–MOab‐initio calculations , 1982 .

[26]  H. Schaefer,et al.  Relativistic and correlation effects in CuH, AgH, and AuH: Comparison of various relativistic methods , 1995 .

[27]  Lorenzo Pisani,et al.  Relativistic Dirac–Fock calculations for closed‐shell molecules , 1994, J. Comput. Chem..

[28]  Trygve Helgaker,et al.  Principles of direct 4-component relativistic SCF: application to caesium auride , 1997 .

[29]  P. Schwerdtfeger,et al.  The accuracy of the pseudopotential approximation. III. A comparison between pseudopotential and all-electron methods for Au and AuH , 2000 .

[30]  P. Pulay Improved SCF convergence acceleration , 1982 .

[31]  S. F. Boys Electronic wave functions - I. A general method of calculation for the stationary states of any molecular system , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[32]  Lucas Visscher,et al.  RELATIVISTIC QUANTUM-CHEMISTRY - THE MOLFDIR PROGRAM PACKAGE , 1994 .

[33]  P. Dirac The quantum theory of the electron , 1928 .

[34]  P. Schwerdtfeger,et al.  Relativistic effects in gold chemistry. VI. Coupled cluster calculations for the isoelectronic series AuPt-, Au2, and AuHg+ , 1999 .

[35]  E. Rohlfing,et al.  UV laser excited fluorescence spectroscopy of the jet‐cooled copper dimer , 1986 .

[36]  John C. Slater,et al.  The Theory of Complex Spectra , 1929 .

[37]  Odd Gropen,et al.  Gaussian basis sets for the fifth row elements, Mo‐Cd, and the sixth row elements W‐RN , 1987 .

[38]  O. Matsuoka,et al.  Relativistic self‐consistent‐field methods for molecules. I. Dirac–Fock multiconfiguration self‐consistent‐field theory for molecules and a single‐determinant Dirac–Fock self‐consistent‐field method for closed‐shell linear molecules , 1980 .

[39]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[40]  D. Hartree The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[41]  L. Visscher,et al.  Relativistic and correlation effects on molecular properties. II. The hydrogen halides HF, HCl, HBr, HI, and HAt , 1996 .

[42]  Ernest R. Davidson,et al.  Spin-restricted open-shell self-consistent-field theory , 1973 .

[43]  E. Davidson,et al.  One- and two-electron integrals over cartesian gaussian functions , 1978 .