Machine learning approach for pavement performance prediction

In recent years, there has been an increasing interest in the application of machine learning for the prediction of pavement performance. Prediction models are used to predict the future pavement c...

[1]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[2]  Timo Hartmann,et al.  Analysing the accuracy of pavement performance models in the short and long terms: GMDH and ANFIS methods , 2016 .

[3]  Halil Ceylan,et al.  Neural Networks Applications in Pavement Engineering: A Recent Survey , 2014 .

[4]  Donald Poskitt,et al.  The selection and use of linear and bilinear time series models , 1986 .

[5]  Thomas G. Dietterich Multiple Classifier Systems , 2000, Lecture Notes in Computer Science.

[6]  Isabelle Guyon,et al.  An Introduction to Feature Extraction , 2006, Feature Extraction.

[7]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[8]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[9]  Sven F. Crone,et al.  Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction , 2011 .

[10]  Richard Simon,et al.  Bias in error estimation when using cross-validation for model selection , 2006, BMC Bioinformatics.

[11]  Timo Hartmann,et al.  Prediction of IRI in short and long terms for flexible pavements: ANN and GMDH methods , 2016 .

[12]  Michael I. Jordan,et al.  Machine learning: Trends, perspectives, and prospects , 2015, Science.

[13]  Victoria J. Hodge,et al.  A Survey of Outlier Detection Methodologies , 2004, Artificial Intelligence Review.

[14]  Guozhong An,et al.  The Effects of Adding Noise During Backpropagation Training on a Generalization Performance , 1996, Neural Computation.

[15]  Rob J Hyndman,et al.  25 years of time series forecasting , 2006 .

[16]  Amir F. Atiya,et al.  A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition , 2011, Expert Syst. Appl..

[17]  Zhen Zhu,et al.  Optimized Approximation Algorithm in Neural Networks Without Overfitting , 2008, IEEE Transactions on Neural Networks.

[18]  Peter Bühlmann,et al.  MissForest - non-parametric missing value imputation for mixed-type data , 2011, Bioinform..

[19]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[20]  Michael P. Clements,et al.  Forecasting economic and financial time-series with non-linear models , 2004 .

[21]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[22]  J. Keith Ord,et al.  Automatic neural network modeling for univariate time series , 2000 .

[23]  Nasir G. Gharaibeh,et al.  IRI Prediction Model for Use in Network-Level Pavement Management Systems , 2017 .

[24]  N. Altman An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression , 1992 .

[25]  Shelley M Stoffels,et al.  Framework for Development and Comprehensive Comparison of Empirical Pavement Performance Models , 2015 .

[26]  Dag Tjøstheim,et al.  Estimation in nonlinear time series models , 1986 .

[27]  A. Vannucci,et al.  Using artificial neural networks to forecast chaotic time series , 2000 .

[28]  Trevor Hastie,et al.  An Introduction to Statistical Learning , 2013, Springer Texts in Statistics.

[29]  Paola Bandini,et al.  Prediction of Pavement Performance through Neuro‐Fuzzy Reasoning , 2010, Comput. Aided Civ. Infrastructure Eng..

[30]  Kyoung-jae Kim,et al.  Financial time series forecasting using support vector machines , 2003, Neurocomputing.

[31]  S. Travis Waller,et al.  Prediction of Pavement Performance: Application of Support Vector Regression with Different Kernels , 2016 .

[32]  Hojjat Adeli,et al.  Neural Networks in Civil Engineering: 1989–2000 , 2001 .

[33]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[34]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[35]  Shelley M Stoffels,et al.  Network-Level Pavement Roughness Prediction Model for Rehabilitation Recommendations , 2010 .

[36]  Mehran Mazari,et al.  Prediction of pavement roughness using a hybrid gene expression programming-neural network technique , 2016 .

[37]  Matthew Scotch,et al.  Comparison of ARIMA and Random Forest time series models for prediction of avian influenza H5N1 outbreaks , 2014, BMC Bioinformatics.

[38]  Pablo Luis Durango-Cohen,et al.  A time series analysis framework for transportation infrastructure management , 2007 .

[39]  Amir F. Atiya,et al.  An Empirical Comparison of Machine Learning Models for Time Series Forecasting , 2010 .