Conjugate heat transfer for the unsteady compressible Navier–Stokes equations using a multi-block coupling

Conjugate heat transfer for the unsteady compressible Navier–Stokes equations using a multi-block coupling

[1]  William D. Henshaw,et al.  A composite grid solver for conjugate heat transfer in fluid-structure systems , 2009, J. Comput. Phys..

[2]  David Gottlieb,et al.  Optimal time splitting for two- and three-dimensional navier-stokes equations with mixed derivatives , 1981 .

[3]  Ken Mattsson,et al.  Summation by Parts Operators for Finite Difference Approximations of Second-Derivatives with Variable Coefficients , 2012, J. Sci. Comput..

[4]  Jing Gong,et al.  A stable and conservative high order multi-block method for the compressible Navier-Stokes equations , 2009, J. Comput. Phys..

[5]  B. Strand Summation by parts for finite difference approximations for d/dx , 1994 .

[6]  H. Kreiss,et al.  Finite Element and Finite Difference Methods for Hyperbolic Partial Differential Equations , 1974 .

[7]  Atipong Malatip,et al.  Streamline upwind finite element method for conjugate heat transfer problems , 2005 .

[8]  Compressible heat transfer computations by an adaptive finite element method , 1999 .

[9]  H. Kreiss,et al.  Initial-Boundary Value Problems and the Navier-Stokes Equations , 2004 .

[10]  Magnus Svärd,et al.  On the order of accuracy for difference approximations of initial-boundary value problems , 2006, J. Comput. Phys..

[11]  Parviz Moin,et al.  Verification of variable-density flow solvers using manufactured solutions , 2012, J. Comput. Phys..

[12]  Xun Huan,et al.  Interface and Boundary Schemes for High-Order Methods , 2009 .

[13]  J. Nordström,et al.  Summation by Parts Operators for Finite Difference Approximations of Second-Derivatives with Variable Coefficients , 2004, Journal of Scientific Computing.

[14]  Mark H. Carpenter,et al.  Stable and Accurate Interpolation Operators for High-Order Multiblock Finite Difference Methods , 2009, SIAM J. Sci. Comput..

[15]  Michael B. Giles,et al.  Stability analysis of numerical interface conditions in fluid-structure thermal analysis , 1997 .

[16]  Magnus Svärd,et al.  Well-Posed Boundary Conditions for the Navier-Stokes Equations , 2005, SIAM J. Numer. Anal..

[17]  Jan Nordström,et al.  Shock and vortex calculations using a very high order accurate Euler and Navier-Stokes solver , 2009 .

[18]  Magnus Svärd,et al.  A stable high-order finite difference scheme for the compressible Navier-Stokes equations: No-slip wall boundary conditions , 2008, J. Comput. Phys..

[19]  Magnus Svärd,et al.  A stable high-order finite difference scheme for the compressible Navier-Stokes equations, far-field boundary conditions , 2007, J. Comput. Phys..

[20]  Michael Schäfer,et al.  Numerical simulation of coupled fluid–solid problems , 2001 .

[21]  Magnus Svärd,et al.  High-order accurate computations for unsteady aerodynamics , 2007 .

[22]  Jan Nordström,et al.  A stable and high-order accurate conjugate heat transfer problem , 2010, J. Comput. Phys..

[23]  Juan J. Alonso,et al.  Multi-code simulations: A generalized coupling approach , 2005 .

[24]  Magnus Svärd,et al.  Steady-State Computations Using Summation-by-Parts Operators , 2005, J. Sci. Comput..

[25]  Jan Nordström,et al.  Stable Robin solid wall boundary conditions for the Navier-Stokes equations , 2011, J. Comput. Phys..

[26]  Magnus Svärd,et al.  Stable and accurate schemes for the compressible Navier-Stokes equations , 2008, J. Comput. Phys..

[27]  D. Gottlieb,et al.  A Stable and Conservative Interface Treatment of Arbitrary Spatial Accuracy , 1999 .

[28]  Magnus Svärd,et al.  A hybrid method for unsteady inviscid fluid flow , 2009 .

[29]  Peng Han,et al.  A note on the solution of conjugate heat transfer problems using SIMPLE-like algorithms , 2000 .

[30]  Rajeev K. Jaiman,et al.  Combined interface boundary condition method for coupled thermal simulations , 2008 .

[31]  D. Gottlieb,et al.  Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes , 1994 .

[32]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .