Tuning supramolecular interactions of cellulose nanocrystals to design innovative functional materials

Abstract Cellulose nanocrystals (CNCs) are obtained from controlled hydrolysis of cellulose microfibrils. They consist in crystalline nanorods that have attracted much attention due to their biocompatibility, biodegradability, renewability and mechanical properties but also in reason of their interaction capacities. This review gives some insights into the versatile applications of CNCs arising from the non-covalent interactions they can establish to build and tune CNC-based supramolecular assemblies. The paper describes the use of (i) electrostatic interactions, (ii) van der Waals and hydrogen bonds and (iii) the uneven exposition of chemical groups due to crystalline organization of nanorods and their various form factors as approaches for the elaboration of functional materials. The interaction capacities are reported by emphasizing the specificity of CNCs and selected examples of CNC-based materials are described to illustrate each type of interaction.

[1]  Vesselin N Paunov,et al.  Long-term stabilization of foams and emulsions with in-situ formed microparticles from hydrophobic cellulose. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[2]  B. Cathala,et al.  Tuning the architecture of cellulose nanocrystal-poly(allylamine hydrochloride) multilayered thin films: influence of dipping parameters. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[3]  B. Chabbert,et al.  Natural organic UV-absorbent coatings based on cellulose and lignin: designed effects on spectroscopic properties. , 2012, Biomacromolecules.

[4]  Mark P. Andrews,et al.  Nanocrystalline cellulose for covert optical encryption , 2012 .

[5]  D. Gray,et al.  Effects of Ionic Strength on the Isotropic−Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites , 1996 .

[6]  L. Bergström,et al.  Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films , 2014 .

[7]  F. Caruso,et al.  Characterization of Polyelectrolyte-Protein Multilayer Films by Atomic Force Microscopy, Scanning Electron Microscopy, and Fourier Transform Infrared Reflection-Absorption Spectroscopy. , 1998 .

[8]  William J. Orts,et al.  Enhanced Ordering of Liquid Crystalline Suspensions of Cellulose Microfibrils: A Small Angle Neutron Scattering Study , 1998 .

[9]  A. Ragauskas,et al.  High Oxygen Nanocomposite Barrier Films Based on Xylan and Nanocrystalline Cellulose , 2010 .

[10]  Akira Isogai,et al.  Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. , 2006, Biomacromolecules.

[11]  N. Kotov,et al.  Layer-by-layer assembled films of cellulose nanowires with antireflective properties. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[12]  B. Cathala,et al.  Kinetic aspects of the adsorption of xyloglucan onto cellulose nanocrystals. , 2015, Soft matter.

[13]  A. Ragauskas,et al.  Moisture barrier properties of xylan composite films , 2011 .

[14]  B. Chabbert,et al.  Structure and optical properties of plant cell wall bio-inspired materials: cellulose-lignin multilayer nanocomposites. , 2011, Comptes rendus biologies.

[15]  Akira Isogai,et al.  TEMPO-oxidized cellulose nanofibers. , 2011, Nanoscale.

[16]  S. Kuga,et al.  Effect of Trace Electrolyte on Liquid Crystal Type of Cellulose Microcrystals , 2001 .

[17]  N. Kotov,et al.  Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. , 2005, Biomacromolecules.

[18]  S. Dubas,et al.  Mechanism of Polyelectrolyte Multilayer Growth: Charge Overcompensation and Distribution , 2001 .

[19]  Dieter Klemm,et al.  Nanocelluloses: a new family of nature-based materials. , 2011, Angewandte Chemie.

[20]  D. Fengel,et al.  Wood: Chemistry, Ultrastructure, Reactions , 1983 .

[21]  S. Eichhorn Cellulose nanowhiskers: promising materials for advanced applications , 2011 .

[22]  Yun Chen,et al.  Cellulose nanowhiskers: preparation, characterization and cytotoxicity evaluation. , 2012, Bio-medical materials and engineering.

[23]  Véronique Favier,et al.  Polymer Nanocomposites Reinforced by Cellulose Whiskers , 1995 .

[24]  Stephanie Beck,et al.  Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. , 2011, Biomacromolecules.

[25]  B. Binks Particles as surfactants—similarities and differences , 2002 .

[26]  Boxin Zhao,et al.  Dual responsive pickering emulsion stabilized by poly[2-(dimethylamino)ethyl methacrylate] grafted cellulose nanocrystals. , 2014, Biomacromolecules.

[27]  B. Bouchet,et al.  Exploring architecture of xyloglucan cellulose nanocrystal complexes through enzyme susceptibility at different adsorption regimes. , 2015, Biomacromolecules.

[28]  Youssef Habibi,et al.  Key advances in the chemical modification of nanocelluloses. , 2014, Chemical Society reviews.

[29]  F. Morehead,et al.  Liquid Crystal Systems from Fibrillar Polysaccharides , 1959, Nature.

[30]  G. J. Fleer,et al.  Formation and stability of multilayers of polyelectrolytes. , 1996 .

[31]  J. Putaux,et al.  Self-assembling and chiral nematic properties of organophilic cellulose nanocrystals. , 2009, The journal of physical chemistry. B.

[32]  J. Sugiyama,et al.  TEMPO-mediated oxidation of native cellulose: Microscopic analysis of fibrous fractions in the oxidized products , 2006 .

[33]  R. Venditti,et al.  Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes. , 2012, Journal of colloid and interface science.

[34]  O. Chauvet,et al.  Cellulose nanocrystal-assisted dispersion of luminescent single-walled carbon nanotubes for layer-by-layer assembled hybrid thin films. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[35]  D. Gray,et al.  Droplets of cellulose nanocrystal suspensions on drying give iridescent 3-D “coffee-stain” rings , 2015, Cellulose.

[36]  R. Pecora,et al.  Translational and Rotational Dynamics of Rodlike Cellulose Whiskers , 2003 .

[37]  Louis Godbout,et al.  Solid self-assembled films of cellulose with chiral nematic order and optically variable properties , 1998 .

[38]  B. Rånby,et al.  Aqueous Colloidal Solutions of Cellulose Micelles. , 1949 .

[39]  C. Rodríguez-Abreu,et al.  Nanocellulose properties and applications in colloids and interfaces , 2014 .

[40]  L. Barré,et al.  A small angle neutron scattering study of the adsorbed asphaltene layer in water-in-hydrocarbon emulsions: structural description related to stability. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[41]  S. Eichhorn,et al.  Supercapacitance from Cellulose and Carbon Nanotube Nanocomposite Fibers , 2013, ACS applied materials & interfaces.

[42]  D. Gray,et al.  Formation of chiral nematic films from cellulose nanocrystal suspensions is a two-stage process. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[43]  D G Gray,et al.  Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. , 1992, International journal of biological macromolecules.

[44]  J. Araki,et al.  Steric Stabilization of a Cellulose Microcrystal Suspension by Poly(ethylene glycol) Grafting , 2001 .

[45]  P. Schaaf,et al.  Protein interactions with polyelectrolyte multilayers: interactions between human serum albumin and polystyrene sulfonate/polyallylamine multilayers. , 2000, Biomacromolecules.

[46]  S. Perrier,et al.  Cellulose modification by polymer grafting: a review. , 2009, Chemical Society reviews.

[47]  F. Cousin,et al.  Influence of charge density and ionic strength on the aggregation process of cellulose nanocrystals in aqueous suspension, as revealed by small-angle neutron scattering. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[48]  O. Chauvet,et al.  Carboxymethylcellulose/single walled carbon nanotube complexes. , 2009, Journal of nanoscience and nanotechnology.

[49]  J. Vincent,et al.  Survival of the cheapest , 2002 .

[50]  G. Maret,et al.  Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation , 1994 .

[51]  D. Gray,et al.  AFM of adsorbed polyelectrolytes on cellulose I surfaces spin-coated on silicon wafers , 2005 .

[52]  R. Berry,et al.  Controlled production of patterns in iridescent solid films of cellulose nanocrystals , 2013, Cellulose.

[53]  Jun Araki,et al.  Electrostatic or steric? – preparations and characterizations of well-dispersed systems containing rod-like nanowhiskers of crystalline polysaccharides , 2013 .

[54]  E. Cranston,et al.  Birefringence in spin-coated films containing cellulose nanocrystals , 2008 .

[55]  R. Steitz,et al.  Short range interactions in polyelectrolyte multilayers , 2004 .

[56]  J. Cavaillé,et al.  A Small-Angle Scattering Study of Cellulose Whiskers in Aqueous Suspensions , 1999 .

[57]  J. Revol On the cross-sectional shape of cellulose crystallites in Valonia ventricosa , 1982 .

[58]  Alain Dufresne,et al.  Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. , 2012, Nanoscale.

[59]  J. Putaux,et al.  The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. , 2008, Biomacromolecules.

[60]  Kristiina Oksman,et al.  Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis , 2006 .

[61]  M. Tsuji,et al.  Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[62]  M. Vignon,et al.  TEMPO-mediated surface oxidation of cellulose whiskers , 2006 .

[63]  J. Bras,et al.  Engineered pigments based on iridescent cellulose nanocrystal films. , 2015, Carbohydrate polymers.

[64]  B. Jean Polymer–Cellulose Nanocrystals Multilayer Films , 2014 .

[65]  Akira Isogai,et al.  Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. , 2009, Biomacromolecules.

[66]  Hernan Charreau,et al.  Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. , 2012, Recent patents on nanotechnology.

[67]  W. Thielemans,et al.  Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). , 2009, Langmuir : the ACS journal of surfaces and colloids.

[68]  Takeshi Okano,et al.  Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose , 1998 .

[69]  S. G. Frank,et al.  MICROCRYSTALLINE CELLULOSE STABILIZEDEMULSIONS , 1986 .

[70]  D. Petri,et al.  Hybrid layer-by-layer assembly based on animal and vegetable structural materials: multilayered films of collagen and cellulose nanowhiskers , 2011 .

[71]  A. Buléon,et al.  Enthalpic studies of xyloglucan-cellulose interactions. , 2010, Biomacromolecules.

[72]  D. Argyropoulos,et al.  Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface , 2011, Journal of Materials Science.

[73]  A. Dufresne,et al.  Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. , 2014, Nanoscale.

[74]  Claudiu B. Bucur,et al.  Ideal mixing in polyelectrolyte complexes and multilayers: entropy driven assembly. , 2006, Journal of the American Chemical Society.

[75]  Kevin E. Shopsowitz,et al.  Free-standing mesoporous silica films with tunable chiral nematic structures , 2010, Nature.

[76]  K. Mazeau On the external morphology of native cellulose microfibrils , 2011 .

[77]  G. Chambat,et al.  Non-electrostatic building of biomimetic cellulose-xyloglucan multilayers. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[78]  H. Bizot,et al.  Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions , 2013 .

[79]  J. Sugiyama,et al.  The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Fumiko Kimura,et al.  Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[81]  H. Bizot,et al.  Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface. , 2012, Biomacromolecules.

[82]  E. Cranston,et al.  Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. , 2006, Biomacromolecules.

[83]  Akira Isogai,et al.  Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials , 2013, Journal of Wood Science.

[84]  D. Gray,et al.  Atomic force microscopy of cellulose microfibrils: comparison with transmission electron microscopy , 1992 .

[85]  Kunihiko Watanabe,et al.  Emulsion-stabilizing Effect of Bacterial Cellulose , 1997 .

[86]  Glaura Goulart Silva,et al.  Layer-by-layer assembled films of multi-walled carbon nanotubes with chitosan and cellulose nanocrystals. , 2014, Journal of colloid and interface science.

[87]  D. Petri,et al.  Bacterial cellulose nanocrystals: impact of the sulfate content on the interaction with xyloglucan , 2015, Cellulose.

[88]  M. Gresil,et al.  Single walled nanotubes/amylose/SDBS complex , 2010 .

[89]  K. Mazeau,et al.  Wetting the (110) and (100) surfaces of Ibeta cellulose studied by molecular dynamics. , 2008, Biomacromolecules.

[90]  C. P. Whitby,et al.  Some general features of limited coalescence in solid-stabilized emulsions , 2003, The European physical journal. E, Soft matter.

[91]  E. Bonnin,et al.  Coloured Semi‐reflective Thin Films for Biomass‐hydrolyzing Enzyme Detection , 2011, Advanced materials.

[92]  L. Berglund,et al.  Preparation of double Pickering emulsions stabilized by chemically tailored nanocelluloses. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[93]  Chaodi Xu,et al.  Flexible freestanding Cladophora nanocellulose paper based Si anodes for lithium-ion batteries , 2015 .

[94]  Alain M. Jonas,et al.  Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties , 2000 .

[95]  R. Klitzing Internal structure of polyelectrolyte multilayer assemblies , 2006 .

[96]  M. Roman,et al.  Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. , 2005, Biomacromolecules.

[97]  A. Carlmark,et al.  Preparation and characterization of functionalized cellulose nanocrystals. , 2015, Carbohydrate polymers.

[98]  Gunnar Westman,et al.  Cationic surface functionalization of cellulose nanocrystals , 2008 .

[99]  H. Bizot,et al.  New Pickering emulsions stabilized by bacterial cellulose nanocrystals. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[100]  B. Rånby Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles , 1951 .

[101]  A. Isogai,et al.  Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO₂ systems in water at pH 4.8 or 6.8. , 2012, International journal of biological macromolecules.

[102]  Robin H. A. Ras,et al.  Modifying Native Nanocellulose Aerogels with Carbon Nanotubes for Mechanoresponsive Conductivity and Pressure Sensing , 2013, Advanced materials.

[103]  J. Buisson,et al.  Photophysical comparative study of amylose and polyvinyle pyrrolidone/single walled carbon nanotubes complex. , 2009, Physical chemistry chemical physics : PCCP.

[104]  M. Rubner,et al.  Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers , 2002, Nature materials.

[105]  M. MacLachlan,et al.  Functional materials from cellulose-derived liquid-crystal templates. , 2015, Angewandte Chemie.

[106]  E. Bonnin,et al.  Xyloglucan-cellulose nanocrystal multilayered films: effect of film architecture on enzymatic hydrolysis. , 2013, Biomacromolecules.

[107]  H. Bizot,et al.  Versatile cellular foams derived from CNC-stabilized Pickering emulsions , 2014 .

[108]  Akira Isogai,et al.  Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. , 2007, Biomacromolecules.

[109]  W. Winter,et al.  Nanocomposites of Cellulose Acetate Butyrate Reinforced with Cellulose Nanocrystals , 2002 .

[110]  Honglai Liu,et al.  Chemistry and Applications of Nanocrystalline Cellulose and its Derivatives: a Nanotechnology Perspective , 2011 .

[111]  L. Lucia,et al.  Cellulose nanocrystals: chemistry, self-assembly, and applications. , 2010, Chemical reviews.

[112]  Xuan Yang,et al.  Cellulose Nanocrystal Aerogels as Universal 3D Lightweight Substrates for Supercapacitor Materials , 2015, Advanced materials.

[113]  B. Rånby,et al.  Über den Feinbau der Zellulose , 1950, Experientia.

[114]  Bernard Cathala,et al.  Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals. , 2013, Biomacromolecules.

[115]  A. Hirsch Functionalization of single-walled carbon nanotubes. , 2002, Angewandte Chemie.

[116]  Redouane Borsali,et al.  Rodlike Cellulose Microcrystals: Structure, Properties, and Applications , 2004 .

[117]  E. J. Foster,et al.  Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. , 2013, Biomacromolecules.

[118]  D. Gray,et al.  Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose , 1998 .

[119]  Yong Bum Park,et al.  A Revised Architecture of Primary Cell Walls Based on Biomechanical Changes Induced by Substrate-Specific Endoglucanases1[C][W][OA] , 2012, Plant Physiology.

[120]  J. Araki,et al.  Influence of surface charge on viscosity behavior of cellulose microcrystal suspension , 1999, Journal of Wood Science.

[121]  H. Bizot,et al.  Elaboration of spin-coated cellulose-xyloglucan multilayered thin films. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[122]  A. Miller,et al.  Imaging of anisotropic cellulose suspensions using environmental scanning electron microscopy. , 2003, Biomacromolecules.

[123]  Minoru Fujita,et al.  Cellulose Synthesized by Acetobacter Xylinum in the Presence of Acetyl Glucomannan , 1998 .

[124]  Qi Zhou,et al.  Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts , 2012 .

[125]  Gero Decher,et al.  Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites , 1997 .

[126]  K. Mazeau,et al.  The xyloglucan–cellulose assembly at the atomic scale , 2006, Biopolymers.

[127]  Julien Bras,et al.  Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications , 2010 .

[128]  P. Langan,et al.  Periodic disorder along ramie cellulose microfibrils. , 2003, Biomacromolecules.

[129]  L. Bergström,et al.  Rod Packing in Chiral Nematic Cellulose Nanocrystal Dispersions Studied by Small-Angle X-ray Scattering and Laser Diffraction. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[130]  K. Mazeau,et al.  The cellulose/lignin assembly assessed by molecular modeling. Part 1: adsorption of a threo guaiacyl β-O-4 dimer onto a Iβ cellulose whisker , 2005 .

[131]  A. Isogai,et al.  Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups , 2011 .