From database to knowledge graph — using data in chemistry

Over the last couple of decades, the scientific community has made large efforts to process and store experimental and computational chemical data and information on the world wide web. This review summarizes several databases and ontologies available on the web for researchers to use. We also discuss briefly the categories of chemistry data that are stored, its main usage and how it can be accessed and understood in the framework of the Semantic Web.

[1]  B. Grzybowski,et al.  The 'wired' universe of organic chemistry. , 2009, Nature chemistry.

[2]  Sebastian Mosbach,et al.  An Ontology and Semantic Web Service for Quantum Chemistry Calculations , 2019, J. Chem. Inf. Model..

[3]  Leroy Cronin,et al.  Organic synthesis in a modular robotic system driven by a chemical programming language , 2019, Science.

[4]  Noel M. O'Boyle Towards a Universal SMILES representation - A standard method to generate canonical SMILES based on the InChI , 2012, Journal of Cheminformatics.

[5]  Henry S. Rzepa,et al.  Chemical Markup, XML, and the Worldwide Web. 1. Basic Principles , 1999, J. Chem. Inf. Comput. Sci..

[6]  Peter Murray-Rust,et al.  The semantics of Chemical Markup Language (CML) for computational chemistry : CompChem , 2012, Journal of Cheminformatics.

[7]  John M Simmie,et al.  A Database of Formation Enthalpies of Nitrogen Species by Compound Methods (CBS-QB3, CBS-APNO, G3, G4). , 2015, The journal of physical chemistry. A.

[8]  David van der Spoel,et al.  The Alexandria library, a quantum-chemical database of molecular properties for force field development , 2018, Scientific Data.

[9]  Jonathan Goodman,et al.  Computer Software Review: Reaxys , 2009, J. Chem. Inf. Model..

[10]  Alexander J. Lawson,et al.  The Making of Reaxys—Towards Unobstructed Access to Relevant Chemistry Information , 2014 .

[11]  Neil S. Ostlund,et al.  Applying the Semantic Web to Computational Chemistry , 2013, SWAT4LS.

[12]  Peter Murray-Rust,et al.  CMLLite: a design philosophy for CML , 2011, J. Cheminformatics.

[13]  M. Head‐Gordon,et al.  How Accurate Is Density Functional Theory at Predicting Dipole Moments? An Assessment Using a New Database of 200 Benchmark Values. , 2017, Journal of chemical theory and computation.

[14]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[15]  Henry S. Rzepa,et al.  Chemical Markup, XML, and the World Wide Web. 6. CMLReact, an XML Vocabulary for Chemical Reactions , 2006, J. Chem. Inf. Model..

[16]  Michael Frenklach,et al.  Transforming data into knowledge—Process Informatics for combustion chemistry , 2007 .

[17]  Olexandr Isayev,et al.  ANI-1, A data set of 20 million calculated off-equilibrium conformations for organic molecules , 2017, Scientific Data.

[18]  Jean-Louis Reymond,et al.  Enumeration of 166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17 , 2012, J. Chem. Inf. Model..

[19]  Stephen R. Heller,et al.  InChI, the IUPAC International Chemical Identifier , 2015, Journal of Cheminformatics.

[20]  Kaizar Amin,et al.  Introduction to Active Thermochemical Tables: Several “Key” Enthalpies of Formation Revisited† , 2004 .

[21]  Boris Motik,et al.  HermiT: An OWL 2 Reasoner , 2014, Journal of Automated Reasoning.

[22]  Alexei Lapkin,et al.  Statistics of the network of organic chemistry , 2018 .

[23]  Richard S. Sutton,et al.  Reinforcement Learning , 1992, Handbook of Machine Learning.

[24]  B. Grzybowski,et al.  The core and most useful molecules in organic chemistry. , 2006, Angewandte Chemie.

[25]  Egon L. Willighagen,et al.  Chemical Markup, XML, and the World Wide Web, 7. CMLSpect, an XML Vocabulary for Spectral Data , 2007, J. Chem. Inf. Model..

[26]  Sebastian Mosbach,et al.  The future of computational modelling in reaction engineering , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  Henry S. Rzepa,et al.  Chemical Markup, XML and the World-Wide Web. 8. Polymer Markup Language , 2008, J. Chem. Inf. Model..

[28]  Henry S. Rzepa,et al.  Chemical Markup, XML, and the World-Wide Web. 3. Toward a Signed Semantic Chemical Web of Trust , 2001, J. Chem. Inf. Comput. Sci..

[29]  Sebastian Mosbach,et al.  OntoKin: An Ontology for Chemical Kinetic Reaction Mechanisms , 2019, J. Chem. Inf. Model..

[30]  Christoph Steinbeck,et al.  ChEBI in 2016: Improved services and an expanding collection of metabolites , 2015, Nucleic Acids Res..

[31]  Pavlo O. Dral,et al.  Quantum chemistry structures and properties of 134 kilo molecules , 2014, Scientific Data.

[32]  C. M. Sperberg-McQueen,et al.  Extensible Markup Language (XML) , 1997, World Wide Web J..

[33]  Jonathan W. Essex,et al.  Bringing Chemical Data onto the Semantic Web , 2006, J. Chem. Inf. Model..

[34]  Asunción Gómez-Pérez,et al.  Building a chemical ontology using Methontology and the Ontology Design Environment , 1999, IEEE Intell. Syst..

[35]  Evan Bolton,et al.  Literature information in PubChem: associations between PubChem records and scientific articles , 2016, Journal of Cheminformatics.

[36]  M. Fiałkowski,et al.  Architecture and evolution of organic chemistry. , 2005, Angewandte Chemie.

[37]  Henry S. Rzepa,et al.  Chemical Markup, XML, and the World Wide Web. 4. CML Schema , 2003, J. Chem. Inf. Comput. Sci..

[38]  C. Steinbeck,et al.  The Chemical Information Ontology: Provenance and Disambiguation for Chemical Data on the Biological Semantic Web , 2011, PloS one.

[39]  Sebastian Mosbach,et al.  Linking reaction mechanisms and quantum chemistry: An ontological approach , 2020, Comput. Chem. Eng..

[40]  Evan Bolton,et al.  PubChem 2019 update: improved access to chemical data , 2018, Nucleic Acids Res..