The finite and spectral cell methods for smart structure applications: transient analysis

This article introduces a robust and efficient numerical tool that is well suited for the simulation of ultrasonic guided waves and can be especially helpful when dealing with heterogeneous materials. The proposed method is based on a combination of high-order finite element methods (FEM) and the fictitious domain concept. If hierarchic shape functions, which are familiar from the p-version of the finite element method (p-FEM), are deployed the method is referred to as the finite cell method (FCM). Where Lagrange polynomials through Gauß–Lobatto–Legendre points are used, we refer to it as the spectral cell method (SCM). The name, SCM, derives from the fact that the deployed shape functions are commonly utilized in the spectral element method. To model smart structure applications such as shape control problems, noise cancelation devices and the excitation/sensing of ultrasonic guided waves, a coupling between electrical and mechanical variables is also taken into account. In this context, we focus on including the linear theory of piezoelectricity in the variational formulation of the FCM and the SCM, respectively. Several numerical benchmark problems are then used to validate the proposed approach. The simulations show promising results with respect to the accuracy of the method and the computational effort. We observe similar convergence properties for the proposed high-order fictitious domain methods as with “conventional” high-order finite element approaches. Implementing the proposed method in existing finite element software is, moreover, a straightforward process. These properties make the method an efficient tool for practical applications in structural health monitoring problems and smart structure applications in general.

[1]  Christian Willberg,et al.  Experimental and Theoretical Analysis of Lamb Wave Generation by Piezoceramic Actuators for Structural Health Monitoring , 2012 .

[2]  Elaine Cohen,et al.  Volumetric parameterization and trivariate B-spline fitting using harmonic functions , 2009, Comput. Aided Geom. Des..

[3]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation—I. Validation , 2002 .

[4]  I. Babuska,et al.  Introduction to Finite Element Analysis: Formulation, Verification and Validation , 2011 .

[5]  Ernst Rank,et al.  Geometric modeling, isogeometric analysis and the finite cell method , 2012 .

[6]  Ernst Rank,et al.  PERFORMANCE OF DIFFERENT INTEGRATION SCHEMES IN FACING DISCONTINUITIES IN THE FINITE CELL METHOD , 2013 .

[7]  D. Inman,et al.  Thermal sensitivity of Lamb waves for structural health monitoring applications. , 2013, Ultrasonics.

[8]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[9]  Alexander Düster,et al.  Local enrichment of the finite cell method for problems with material interfaces , 2013 .

[10]  Guang Meng,et al.  Modeling of wave propagation in plate structures using three-dimensional spectral element method for damage detection , 2009 .

[11]  李开泰,et al.  FICTITIOUS DOMAIN METHODS FOR NAVIER-STOKES EQUATIONS BASED ON PENALTY FACTOR ε , 1998 .

[12]  S. R. Mirghaderi,et al.  Analysis of near‐regular structures using the force method , 2012 .

[13]  M. Krommer The significance of non-local constitutive relations for composite thin plates including piezoelastic layers with prescribed electric charge , 2003 .

[14]  Fu-Kuo Chang,et al.  Optimizing a spectral element for modeling PZT-induced Lamb wave propagation in thin plates , 2009 .

[15]  P. Pinsky,et al.  Complex wavenumber Fourier analysis of the p-version finite element method , 1994 .

[16]  D Komatitsch,et al.  CASTILLO-COVARRUBIAS JM, SANCHEZ-SESMA FJ. THE SPECTRAL ELEMENT METHOD FOR ELASTIC WAVE EQUATIONS-APPLICATION TO 2-D AND 3-D SEISMIC PROBLEMS , 1999 .

[17]  Ernst Rank,et al.  The hp‐d‐adaptive finite cell method for geometrically nonlinear problems of solid mechanics , 2012 .

[18]  T. Ikeda Fundamentals of piezoelectricity , 1990 .

[19]  Alexander Düster,et al.  Non-standard bone simulation: interactive numerical analysis by computational steering , 2011, Comput. Vis. Sci..

[20]  E. Rank Adaptive remeshing and h-p domain decomposition , 1992 .

[21]  V. Lakshmikantham,et al.  Stability of conditionally invariant sets and controlleduncertain dynamic systems on time scales , 1995 .

[22]  Ulrich Gabbert,et al.  Numerical simulation of Lamb wave propagation in metallic foam sandwich structures : a parametric study , 2013 .

[23]  Ernst Rank,et al.  The finite cell method for three-dimensional problems of solid mechanics , 2008 .

[24]  W. Ostachowicz,et al.  Guided Waves in Structures for SHM: The Time - domain Spectral Element Method , 2012 .

[25]  Ulrich Gabbert,et al.  Modeling of a fluid-loaded smart shell structure for active noise and vibration control using a coupled finite element–boundary element approach , 2010 .

[26]  U Gabbert,et al.  Simulation of Lamb wave reflections at plate edges using the semi-analytical finite element method. , 2012, Ultrasonics.

[27]  Christian Boller,et al.  Health Monitoring of Aerospace Structures , 2003 .

[28]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[29]  Fu-Kuo Chang,et al.  Encyclopedia of structural health monitoring , 2009 .

[30]  Ayech Benjeddou,et al.  Advances in piezoelectric finite element modeling of adaptive structural elements: a survey , 2000 .

[31]  Hans-Georg Sehlhorst Numerical homogenization strategies for cellular materials with applications in structural mechanics , 2011 .

[32]  E. Rank,et al.  Fixed‐grid fluid–structure interaction in two dimensions based on a partitioned Lattice Boltzmann and p‐FEM approach , 2009 .

[33]  Ulrich Gabbert,et al.  PIEZOELECTRIC CONTROLLED NOISE ATTENUATION OF ENGINEERING SYSTEMS , 2011 .

[34]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[35]  Guang Meng,et al.  Wave Propagation Analysis in Composite Laminates Containing a Delamination Using a Three-Dimensional Spectral Element Method , 2012 .

[36]  Ernst Rank,et al.  The finite cell method for the J2 flow theory of plasticity , 2013 .

[37]  Bin Zhu,et al.  Comments on ``Free vibration of skew Mindlin plates by p-version of F.E.M.'' , 2004 .

[38]  Li Yongqiang,et al.  Free vibration analysis of circular and annular sectorial thin plates using curve strip Fourier p-element , 2007 .

[39]  T. Hughes,et al.  Finite element method for piezoelectric vibration , 1970 .

[40]  W. J. Gordon Blending-Function Methods of Bivariate and Multivariate Interpolation and Approximation , 1971 .

[41]  Ernst Rank,et al.  An efficient integration technique for the voxel‐based finite cell method , 2012 .

[42]  Chien-Ching Ma,et al.  Theoretical analysis and experimental measurement for resonant vibration of piezoceramic circular plates. , 2004, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[43]  Alexander Düster,et al.  Finite and spectral cell method for wave propagation in heterogeneous materials , 2014, Computational Mechanics.

[44]  Victor Giurgiutiu,et al.  7 – PIEZOELECTRIC WAFER ACTIVE SENSORS , 2008 .

[45]  Ernst Rank,et al.  Finite cell method , 2007 .

[46]  C. Peskin The Fluid Dynamics of Heart Valves: Experimental, Theoretical, and Computational Methods , 1982 .

[47]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation: II. Three-dimensional models, oceans, rotation and self-gravitation , 2002 .

[48]  Hwanjeong Cho,et al.  Structural health monitoring of fatigue crack growth in plate structures with ultrasonic guided waves , 2012 .

[49]  Christian Willberg,et al.  Development, Validation and Comparison of Higher Order Finite Element Approaches to Compute the Propagation of Lamb Waves Efficiently , 2012 .

[50]  Wieslaw Ostachowicz,et al.  3D time-domain spectral elements for stress waves modelling , 2009 .

[51]  Ernst Rank,et al.  Thin Solids for Fluid-Structure Interaction , 2006 .

[52]  U. Gabbert,et al.  Comparison of different higher order finite element schemes for the simulation of Lamb waves , 2012 .

[53]  Ernst Rank,et al.  The finite cell method for bone simulations: verification and validation , 2012, Biomechanics and modeling in mechanobiology.

[54]  S. Duczek,et al.  Simulation of Lamb waves using the spectral cell method , 2013, Smart Structures.

[55]  Alexander Düster,et al.  Numerical analysis of Lamb waves using the finite and spectral cell methods , 2014 .

[56]  S. LynchChristopher,et al.  リラクサ強誘電体8/65/35PLZTとオルセンサイクルを用いる焦電廃熱エネルギー回収 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2012 .

[57]  Y. Bazilevs,et al.  Small and large deformation analysis with the p- and B-spline versions of the Finite Cell Method , 2012 .

[58]  Ernst Rank,et al.  Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method , 2012, Computational Mechanics.

[59]  Ulrich Gabbert,et al.  Anisotropic hierarchic finite elements for the simulation of piezoelectric smart structures , 2013 .

[60]  Marek Krawczuk,et al.  Wave propagation modelling in 1D structures using spectral finite elements , 2007 .

[61]  Tom Lyche,et al.  Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis , 2010 .

[62]  Ulrich Gabbert,et al.  Numerical simulation of the Lamb wave propagation in honeycomb sandwich panels: A parametric study , 2013 .

[63]  G. Manson,et al.  Non-destructive inspection of adhesively bonded patch repairs using Lamb waves , 2012 .

[64]  V. Piefort FINITE ELEMENT MODELLING OF PIEZOELECTRIC ACTIVE STRUCTURES: SOME AP- PLICATIONS IN VIBROACOUSTICS , 2001 .

[65]  I. A. Viktorov Rayleigh and Lamb Waves , 1967 .

[66]  Marek Krawczuk,et al.  Damage detection strategies based on propagation of guided elastic waves , 2012 .

[67]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[68]  Ernst Rank,et al.  The Finite Cell Method for linear thermoelasticity , 2012, Comput. Math. Appl..

[69]  Christian Willberg,et al.  Development of a three-dimensional piezoelectric isogeometric finite element for smart structure applications , 2012, Acta Mechanica.

[70]  Wieslaw Ostachowicz,et al.  Damage detection in composite plates with embedded PZT transducers , 2008 .

[71]  Zhengxiong Yang,et al.  The Finite Cell Method for Geometry-Based Structural Simulation , 2011 .

[72]  H. Lamb On waves in an elastic plate , 1917 .

[73]  Manfred Krafczyk,et al.  Lattice-Boltzmann Method on Quadtree-Type Grids for Fluid-Structure Interaction , 2006 .

[74]  Ettore Barbieri,et al.  Impact localization in composite structures of arbitrary cross section , 2012 .

[75]  Stuart R Blair,et al.  Lattice Boltzmann Methods for Fluid Structure Interaction , 2012 .

[76]  Zohar Yosibash,et al.  p-FEMs in biomechanics: Bones and arteries , 2012 .