Optical remote measurement of toxic gases.

Enactment of the Clean Air Act Amendments (CAAA) of 1990 has resulted in increased ambient air monitoring needs for industry, some of which may be met efficiently using open-path optical remote sensing techniques. These techniques include Fourier transform spectroscopy, differential optical absorption spectroscopy, laser long-path absorption, differential absorption lidar, and gas cell correlation spectroscopy. With this regulatory impetus, it is an opportune time to consider applying these technologies to the remote and/or path-averaged measurement and monitoring of toxic gases covered by the CAAA. This article reviews the optical remote sensing technology and literature for that application.

[1]  G. Bishop,et al.  IR long-path photometry: a remote sensing tool for automobile emissions. , 1989, Analytical chemistry.

[2]  H. Dorn,et al.  Measurement of tropospheric OH concentrations by laser long-path absorption spectroscopy , 1988 .

[3]  John T. Ditillo,et al.  Design of optimized finite impulse response digital filters for use with passive Fourier transform infrared interferograms , 1990 .

[4]  L. L. Spiller,et al.  Infrared Measurement of Fluorocarbons, Carbon Tetrachloride, Carbonyl Sulfide, And Other Atmospheric Trace Gases , 1975 .

[5]  R. Stephens,et al.  Remote Sensing Measurements of Carbon Monoxide Emissions from On-Road Vehicles , 1991 .

[6]  Takao Kobayashi,et al.  Techniques for laser remote sensing of the environment , 1987 .

[7]  M. Coffey,et al.  Airborne measurements of stratospheric constituents over Antarctica in the Austral Spring 1987: 1. Method and ozone observations , 1989 .

[8]  P V Cvijin,et al.  Reflectance spectra of terrestrial surface materials at CO2 laser wavelengths: effects on DIAL and geological remote sensing. , 1987, Applied optics.

[9]  S. Levine,et al.  Fourier transform infrared least-squares methods for the quantitative analysis of multicomponent mixtures of airborne vapors of industrial hygiene concern. , 1989, Analytical Chemistry.

[10]  S. Levine,et al.  Fourier Transform Infrared (FTIR) Spectroscopy for Monitoring Semiconductor Process Gas Emissions , 1986 .

[11]  W. Thain Monitoring toxic gases in the atmosphere for hygiene and pollution control , 1980 .

[12]  T. Daniel Walsh,et al.  Lidar measurements of stratospheric ozone and intercomparisons and validation. , 1990, Applied optics.

[13]  S. Solomon,et al.  Visible spectroscopy at McMurdo Station, Antarctica: 1. Overview and daily variations of NO2 and O3, Austral Spring, 1986 , 1987 .

[14]  R. Measures Laser remote sensing : fundamentals and applications , 1984 .

[15]  D. Rickel,et al.  Long-path laser monitor of carbon monoxide: system improvements. , 1979, Applied optics.

[16]  A. A. Eddy,et al.  Note added in proof: Mechanisms of solute transport in selected eukaryotic micro-organisms , 1982 .

[17]  Heinz W. Biermann,et al.  Measurements of nitrous acid, nitrate radicals, formaldehyde, and nitrogen dioxide for the Southern California Air Quality Study by differential optical absorption spectroscopy , 1991, Photonics West - Lasers and Applications in Science and Engineering.

[18]  Frank H. Murcray,et al.  Measurements of several atmospheric gases above the South Pole in December 1986 from high-resolution 3- to 4-μm solar spectra , 1988 .

[19]  A I Petrov,et al.  Laser beam propagation through the turbulent atmosphere with precipitation. , 1988, Applied optics.

[20]  E. V. Browell,et al.  Differential absorption lidar sensing of ozone , 1989, Proc. IEEE.

[21]  J C Petheram Differential backscatter from the atmospheric aerosol: the implications for IR differential absorption lidar. , 1981, Applied optics.

[22]  Robert T. Kroutil,et al.  Signal Processing Techniques for Remote Infrared Chemical Sensing , 1990 .

[23]  M. Erickson,et al.  The potential of continuous emission monitoring of hazardous waste incinerators using Fourier transform infrared spectroscopy , 1990 .

[24]  H. A. Wallio,et al.  Carbon monoxide mixing ratio inference from gas filter radiometer data. , 1983, Applied optics.

[25]  Chris W. Brown,et al.  Matrix representations and criteria for selecting analytical wavelengths for multicomponent spectroscopic analysis , 1982 .

[26]  William B. Grant The Mobile Atmospheric Pollutant Mapping (MAPM) System: A Coherent CO2 Dial System , 1989, Photonics West - Lasers and Applications in Science and Engineering.

[27]  H. Edner,et al.  Monitoring Cl(2) using a differential absorption lidar system. , 1987, Applied optics.

[28]  M. Millán,et al.  ABSORPTION CORRELATION SPECTROMETRY , 1984 .

[29]  R H Partridge Long-Path Monitoring of Atmospheric Pollution , 1990 .

[30]  R. C. Carlson,et al.  Remote observations of effluents from small building smokestacks using FTIR spectroscopy. , 1988, Applied optics.

[31]  W. Grant,et al.  FTIR-spectrometer-determined absorption coefficients of seven hydrazine fuel gases: implications for laser remote sensing. , 1984, Applied optics.

[32]  C B Carlisle,et al.  Quantum noise-limited FM spectroscopy with a lead-salt diode laser. , 1989, Applied optics.

[33]  Matthew J. Hall,et al.  Measuring Chlorinated Hydrocarbons in Combustion by Use of Fourier Transform Infrared Spectroscopy , 1991 .

[34]  S. Levine,et al.  The Limits of Detection for the Monitoring of Semiconductor Manufacturing Gas and Vapor Emissions by Fourier Transform Infrared (FTIR) Spectroscopy , 1989 .

[35]  R. J. Bell,et al.  Introductory Fourier transform spectroscopy , 1972 .

[36]  R. A. Smith,et al.  Book Reviews: The Detection and Measurement of Infra-Red Radiation , 1957 .

[37]  Jay A. Fox,et al.  Rapid-tuning device for CO2 heterodyne detection lidar , 1989 .

[38]  A. Galais,et al.  Gas concentration measurement by spectral correlation: rejection of interferent species. , 1985, Applied optics.

[39]  Markus W. Sigrist,et al.  Atmospheric pollution monitoring using CO2‐laser photoacoustic spectroscopy and other techniques , 1990 .

[40]  P. J. Curran,et al.  Remote sensing terminology , 1983 .

[41]  Stanley C. Solomon,et al.  Visible spectroscopy at McMurdo Station, Antarctica , 1987 .

[42]  D. Haaland,et al.  Application of New Least-Squares Methods for the Quantitative Infrared Analysis of Multicomponent Samples , 1982 .

[43]  G. W. Small,et al.  Detection of atmospheric pollutants by direct analysis of passive Fourier transform infrared interferograms. , 1988, Analytical chemistry.

[44]  E. Fujita,et al.  Ambient formic acid in Southern California air: a comparison of two methods, Fourier transform infrared spectroscopy and alkaline trap-liquid chromatography with UV detection , 1990 .

[45]  James D. Brasher,et al.  Remote Fourier Transform Infrared Air Pollution Studies , 1980 .

[46]  Ulrich Platt,et al.  Measurements of Atmospheric Trace Gases by Long Path Differential UV/Visible Absorption Spectroscopy , 1983 .

[47]  William F. Herget,et al.  Auto exhaust gas analysis by FTIR spectroscopy , 1991, Photonics West - Lasers and Applications in Science and Engineering.

[48]  John H. Shaw,et al.  The Quantitative Analysis of Absorption Spectra , 1979 .

[49]  W B Grant,et al.  He-Ne and cw CO2 laser long-path systems for gas detection. , 1986, Applied optics.

[50]  H. Zwick,et al.  Gas cell correlation spectrometer: GASPEC. , 1975, Applied Optics.

[51]  R. H. Pierson,et al.  Catalog of Infrared Spectra for Qualitative Analysis of Gases , 1956 .

[52]  Eugenio Zanzottera,et al.  Differential Absorption Lidar Techniques in the Determination of Trace Pollutants and Physical Parameters of the Atmosphere , 1990 .

[53]  H Edner,et al.  Atmospheric atomic mercury monitoring using differential absorption lidar techniques. , 1989, Applied optics.

[54]  N Menyuk,et al.  Laser remote sensing of hydrazine, MMH, and UDMH using a differential-absorption CO2 lidar. , 1982, Applied optics.

[55]  L. Wöste,et al.  Simultaneous NO and NO(2) DIAL measurement using BBO crystals. , 1989, Applied optics.

[56]  William A. McClenny,et al.  Methodology for Comparison of Open-Path Monitors with Point Monitors , 1974 .

[57]  S. Levine,et al.  Iterative least-squares fit procedures for the identification of organic vapor mixtures by Fourier transform infrared spectrophotometry. , 1989, Analytical chemistry.

[58]  M. Molina,et al.  Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range , 1986 .

[59]  Bryan Lee Highlights of the Clean Air Act Amendments off 1990 , 1991 .

[60]  A. Ravishankara,et al.  Remote sensing observations of daytime column NO2 during the Airborne Antarctic Ozone Experiment, August 22 to October 2, 1987 , 1989 .

[61]  William B. Grant,et al.  Differential absorption and Raman lidar for water vapor profile measurements; A review , 1991 .

[62]  Arthur M. Winer,et al.  Simultaneous absolute measurements of gaseous nitrogen species in urban ambient air by long pathlength infrared and ultraviolet-visible spectroscopy , 1988 .

[63]  N Menyuk,et al.  Laser Remote Sensing of the Atmosphere , 1987, Science.

[64]  R. T. Ku,et al.  Long-path monitoring of atmospheric carbon monoxide with a tunable diode laser system. , 1975, Applied optics.

[65]  A. Winer,et al.  A kilometer pathlength Fourier-transform infrared system for the study of trace pollutants in ambient and synthetic atmospheres. , 1978, Atmospheric environment.

[66]  E Trakhovsky,et al.  Contribution of oxygen to attenuation in the solar blind UV spectral region. , 1989, Applied optics.

[67]  B. Green,et al.  Absorption coefficients for fourteen gases at CO(2) laser frequencies. , 1976, Applied optics.

[68]  J. A. Silver,et al.  Diode laser measurements of trace concentrations of ammonia in an entrained-flow coal reactor. , 1991, Applied optics.

[69]  Ulrich Platt,et al.  Direct measurements of atmospheric CH2O, HNO2, O3, NO2, and SO2 by differential optical absorption in the near UV , 1980 .

[70]  Jacques Pelon,et al.  Lidar measurements of sulfur dioxide and ozone in the boundary layer during the 1983 Fos Berre Campaign , 1987 .

[71]  Jean-Pierre Wolf,et al.  Use of lidar measurements and numerical models in air pollution research , 1990 .

[72]  M. A. Stamps,et al.  Carbon dioxide laser absorption spectra of toxic industrial compounds. , 1982, Applied optics.

[73]  W. Grant Ozone measuring instruments for the stratosphere , 1989 .

[74]  Stephen R. Lowry,et al.  Expert system for interpretation of the infrared spectra of environmental mixtures , 1988 .

[75]  C. Jaussaud,et al.  Absorption coefficients of various pollutant gases at CO(2) laser wavelengths; application to the remote sensing of those pollutants. , 1978, Applied optics.

[76]  C. Freed,et al.  Absolute frequencies of lasing transitions in seven CO2isotopic species , 1980, IEEE Journal of Quantum Electronics.

[77]  W. McClenny,et al.  laser-based, long path monitoring of ambient gases — analysis of two systems , 1978 .

[78]  H Edner,et al.  Differential optical absorption spectroscopy system used for atmospheric mercury monitoring. , 1986, Applied optics.

[79]  W. Grant,et al.  A Survey of Laser and Selected Optical Systems for Remote Measurement of Pollutant Gas Concentrations , 1983 .

[80]  P. Jurs,et al.  Computer-Enhanced Analytical Spectroscopy , 1988 .