Ultrathin Hf0.5Zr0.5O2 Ferroelectric Films on Si.

Because of their immense scalability and manufacturability potential, the HfO2-based ferroelectric films attract significant attention as strong candidates for application in ferroelectric memories and related electronic devices. Here, we report the ferroelectric behavior of ultrathin Hf0.5Zr0.5O2 films, with the thickness of just 2.5 nm, which makes them suitable for use in ferroelectric tunnel junctions, thereby further expanding the area of their practical application. Transmission electron microscopy and electron diffraction analysis of the films grown on highly doped Si substrates confirms formation of the fully crystalline non-centrosymmetric orthorhombic phase responsible for ferroelectricity in Hf0.5Zr0.5O2. Piezoresponse force microscopy and pulsed switching testing performed on the deposited top TiN electrodes provide further evidence of the ferroelectric behavior of the Hf0.5Zr0.5O2 films. The electronic band lineup at the top TiN/Hf0.5Zr0.5O2 interface and band bending at the adjacent n(+)-Si bottom layer attributed to the polarization charges in Hf0.5Zr0.5O2 have been determined using in situ X-ray photoelectron spectroscopy analysis. The obtained results represent a significant step toward the experimental implementation of Si-based ferroelectric tunnel junctions.

[1]  Yoshitaka Tsunashima,et al.  Improvement of threshold voltage deviation in damascene metal gate transistors , 2001 .

[2]  Julie Grollier,et al.  Solid-state memories based on ferroelectric tunnel junctions. , 2012, Nature nanotechnology.

[3]  Thomas Mikolajick,et al.  Ferroelectric Hafnium Oxide Based Materials and Devices: Assessment of Current Status and Future Prospects , 2015 .

[4]  Sergei V. Kalinin,et al.  Contrast Mechanism Maps for Piezoresponse Force Microscopy , 2002 .

[5]  Uwe Schröder,et al.  Insights into electrical characteristics of silicon doped hafnium oxide ferroelectric thin films , 2012 .

[6]  E. A. Kraut,et al.  Precise Determination of the Valence-Band Edge in X-Ray Photoemission Spectra: Application to Measurement of Semiconductor Interface Potentials , 1980 .

[7]  V. Garcia,et al.  Giant tunnel electroresistance for non-destructive readout of ferroelectric states , 2009, Nature.

[8]  J. Dai,et al.  Nanoscale ferroelectric tunnel junctions based on ultrathin BaTiO3 film and Ag nanoelectrodes , 2012 .

[9]  J. Junquera,et al.  Critical thickness for ferroelectricity in perovskite ultrathin films , 2003, Nature.

[10]  Di Wu,et al.  Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. , 2013, Nature materials.

[11]  Johannes Müller,et al.  (Invited) Ferroelectric Hafnium Oxide Based Materials and Devices: Assessment of Current Status and Future Prospects , 2014 .

[12]  Christoph Adelmann,et al.  Impact of different dopants on the switching properties of ferroelectric hafniumoxide , 2014 .

[13]  Hermann Kohlstedt,et al.  Tunneling Across a Ferroelectric , 2006, Science.

[14]  A. Gruverman,et al.  Polarization relaxation kinetics in ultrathin ferroelectric capacitors , 2013 .

[15]  James F. Scott,et al.  Switching kinetics of lead zirconate titanate submicron thin‐film memories , 1988 .

[16]  O. Orlov,et al.  Confinement-free annealing induced ferroelectricity in Hf0.5Zr0.5O2 thin films , 2015 .

[17]  Ho Won Jang,et al.  Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. , 2009, Nano letters.

[18]  D. K. Smith,et al.  The crystal structure of baddeleyite (monoclinic ZrO2) and its relation to the polymorphism of ZrO2 , 1965 .

[19]  Thomas Mikolajick,et al.  Incipient Ferroelectricity in Al‐Doped HfO2 Thin Films , 2012 .

[20]  Harland G. Tompkins,et al.  Titanium nitride oxidation chemistry: An x‐ray photoelectron spectroscopy study , 1992 .

[21]  O. Auciello,et al.  Ferroelectricity in Ultrathin Perovskite Films , 2004, Science.

[22]  Lothar Frey,et al.  Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications , 2011 .

[23]  B. Vilquin,et al.  Electromechanical response of amorphous LaAlO3 thin film probed by scanning probe microscopies , 2014 .

[24]  S. K. Streiffer,et al.  Observation of nanoscale 180° stripe domains in ferroelectric PbTiO3 thin films , 2002 .

[25]  Stephen Ducharme,et al.  Two-dimensional ferroelectric films , 1998, Nature.

[26]  N. Ming,et al.  Colossal electroresistance in metal/ferroelectric/semiconductor tunnel diodes for resistive switching memories , 2012, 1208.5300.

[27]  A. Kingon,et al.  Atomic force microscopy-based experimental setup for studying domain switching dynamics in ferroelectric capacitors , 2005 .

[28]  E. Gusev,et al.  Measurements of metal gate effective work function by x-ray photoelectron spectroscopy , 2007 .

[29]  Vincent Garcia,et al.  Ferroelectric tunnel junctions for information storage and processing , 2014, Nature Communications.

[30]  G. Pourtois,et al.  Identification of the ferroelectric switching process and dopant-dependent switching properties in orthorhombic HfO2: A first principles insight , 2014 .

[31]  Lothar Frey,et al.  Ferroelectricity in Simple Binary ZrO2 and HfO2. , 2012, Nano letters.

[32]  Sebastian Doniach,et al.  Many-electron singularity in X-ray photoemission and X-ray line spectra from metals , 1970 .

[33]  Uwe Schroeder,et al.  On the structural origins of ferroelectricity in HfO2 thin films , 2015 .

[34]  Michael F. Hochella,et al.  A reassessment of electron escape depths in silicon and thermally grown silicon dioxide thin films , 1988 .

[35]  C. Hu,et al.  Ferroelectricity in HfO2 thin films as a function of Zr doping , 2017, 2017 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA).

[36]  Andrey S. Baturin,et al.  Electronic band alignment and electron transport in Cr/BaTiO3/Pt ferroelectric tunnel junctions , 2013 .

[37]  Robert M. Wallace,et al.  SiO2 film thickness metrology by x-ray photoelectron spectroscopy , 1997 .

[38]  E. Tsymbal,et al.  Mechanical Tuning of LaAlO3/SrTiO3 Interface Conductivity. , 2015, Nano letters.

[39]  R. J. Hill,et al.  Crystal Structure of Orthorhombic Zirconia in Partially Stabilized Zirconia , 1989 .

[40]  Germany,et al.  Theoretical current-voltage characteristics of ferroelectric tunnel junctions , 2005, cond-mat/0503546.

[41]  C. Hwang,et al.  Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature , 2013 .