Ultrathin Hf0.5Zr0.5O2 Ferroelectric Films on Si.
暂无分享,去创建一个
Dmitrii Negrov | Alexei Gruverman | A. Gruverman | A. Zenkevich | Haidong Lu | A. Chernikova | D. Negrov | S. Zarubin | E. Suvorova | M. Spiridonov | M. Kozodaev | A. Markeev | O. Bak | P. Buragohain | Haidong Lu | Andrei Zenkevich | Pratyush Buragohain | Anna Chernikova | Maksim Kozodaev | Andrei Markeev | Maksim Spiridonov | Sergei Zarubin | Ohheum Bak | Elena Suvorova
[1] Yoshitaka Tsunashima,et al. Improvement of threshold voltage deviation in damascene metal gate transistors , 2001 .
[2] Julie Grollier,et al. Solid-state memories based on ferroelectric tunnel junctions. , 2012, Nature nanotechnology.
[3] Thomas Mikolajick,et al. Ferroelectric Hafnium Oxide Based Materials and Devices: Assessment of Current Status and Future Prospects , 2015 .
[4] Sergei V. Kalinin,et al. Contrast Mechanism Maps for Piezoresponse Force Microscopy , 2002 .
[5] Uwe Schröder,et al. Insights into electrical characteristics of silicon doped hafnium oxide ferroelectric thin films , 2012 .
[6] E. A. Kraut,et al. Precise Determination of the Valence-Band Edge in X-Ray Photoemission Spectra: Application to Measurement of Semiconductor Interface Potentials , 1980 .
[7] V. Garcia,et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states , 2009, Nature.
[8] J. Dai,et al. Nanoscale ferroelectric tunnel junctions based on ultrathin BaTiO3 film and Ag nanoelectrodes , 2012 .
[9] J. Junquera,et al. Critical thickness for ferroelectricity in perovskite ultrathin films , 2003, Nature.
[10] Di Wu,et al. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. , 2013, Nature materials.
[11] Johannes Müller,et al. (Invited) Ferroelectric Hafnium Oxide Based Materials and Devices: Assessment of Current Status and Future Prospects , 2014 .
[12] Christoph Adelmann,et al. Impact of different dopants on the switching properties of ferroelectric hafniumoxide , 2014 .
[13] Hermann Kohlstedt,et al. Tunneling Across a Ferroelectric , 2006, Science.
[14] A. Gruverman,et al. Polarization relaxation kinetics in ultrathin ferroelectric capacitors , 2013 .
[15] James F. Scott,et al. Switching kinetics of lead zirconate titanate submicron thin‐film memories , 1988 .
[16] O. Orlov,et al. Confinement-free annealing induced ferroelectricity in Hf0.5Zr0.5O2 thin films , 2015 .
[17] Ho Won Jang,et al. Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. , 2009, Nano letters.
[18] D. K. Smith,et al. The crystal structure of baddeleyite (monoclinic ZrO2) and its relation to the polymorphism of ZrO2 , 1965 .
[19] Thomas Mikolajick,et al. Incipient Ferroelectricity in Al‐Doped HfO2 Thin Films , 2012 .
[20] Harland G. Tompkins,et al. Titanium nitride oxidation chemistry: An x‐ray photoelectron spectroscopy study , 1992 .
[21] O. Auciello,et al. Ferroelectricity in Ultrathin Perovskite Films , 2004, Science.
[22] Lothar Frey,et al. Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications , 2011 .
[23] B. Vilquin,et al. Electromechanical response of amorphous LaAlO3 thin film probed by scanning probe microscopies , 2014 .
[24] S. K. Streiffer,et al. Observation of nanoscale 180° stripe domains in ferroelectric PbTiO3 thin films , 2002 .
[25] Stephen Ducharme,et al. Two-dimensional ferroelectric films , 1998, Nature.
[26] N. Ming,et al. Colossal electroresistance in metal/ferroelectric/semiconductor tunnel diodes for resistive switching memories , 2012, 1208.5300.
[27] A. Kingon,et al. Atomic force microscopy-based experimental setup for studying domain switching dynamics in ferroelectric capacitors , 2005 .
[28] E. Gusev,et al. Measurements of metal gate effective work function by x-ray photoelectron spectroscopy , 2007 .
[29] Vincent Garcia,et al. Ferroelectric tunnel junctions for information storage and processing , 2014, Nature Communications.
[30] G. Pourtois,et al. Identification of the ferroelectric switching process and dopant-dependent switching properties in orthorhombic HfO2: A first principles insight , 2014 .
[31] Lothar Frey,et al. Ferroelectricity in Simple Binary ZrO2 and HfO2. , 2012, Nano letters.
[32] Sebastian Doniach,et al. Many-electron singularity in X-ray photoemission and X-ray line spectra from metals , 1970 .
[33] Uwe Schroeder,et al. On the structural origins of ferroelectricity in HfO2 thin films , 2015 .
[34] Michael F. Hochella,et al. A reassessment of electron escape depths in silicon and thermally grown silicon dioxide thin films , 1988 .
[35] C. Hu,et al. Ferroelectricity in HfO2 thin films as a function of Zr doping , 2017, 2017 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA).
[36] Andrey S. Baturin,et al. Electronic band alignment and electron transport in Cr/BaTiO3/Pt ferroelectric tunnel junctions , 2013 .
[37] Robert M. Wallace,et al. SiO2 film thickness metrology by x-ray photoelectron spectroscopy , 1997 .
[38] E. Tsymbal,et al. Mechanical Tuning of LaAlO3/SrTiO3 Interface Conductivity. , 2015, Nano letters.
[39] R. J. Hill,et al. Crystal Structure of Orthorhombic Zirconia in Partially Stabilized Zirconia , 1989 .
[40] Germany,et al. Theoretical current-voltage characteristics of ferroelectric tunnel junctions , 2005, cond-mat/0503546.
[41] C. Hwang,et al. Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature , 2013 .