Examination of the Role of Detection Systems in Quantitation and Image Quality in PET

Future improvement in PET will likely be the result of the development of devices to circumvent limitations on resolution imposed by one crystal/photomultiplier (PMT) detector systems. Three types of systems are in some stage of development: (1) multiple crystals coupled to multiple PMTs in such a manner that simple digital logic codes identify crystals of interaction, (2) single or multiple crystals coupled to multiple PMTs in such a manner that analog logic systems identify crystals of interaction, and (3) small solid-state photosensors which either identify crystals of interaction with timing by the PMT or completely replace the PMT. The value of the various types of detectors must be considered in terms of the type of measurement that is to be performed. Factors that must be considered are the distribution of the radioisotope in the field-of-view, the amount of activity that may be injected because of dose considerations and the size of the structures to be imaged.

[1]  M E Phelps,et al.  An analysis of signal amplification using small detectors in positron emission tomography. , 1982, Journal of computer assisted tomography.

[2]  M. Singh,et al.  A Computer Assisted Ringdector Positron Camera System for Reconstruction Tomography of the Brain , 1978, IEEE Transactions on Nuclear Science.

[3]  M. Ter-pogossian,et al.  Experimental Assessment of the Gain Achieved by the Utilization of Time-of-Flight Information in a Positron Emission Tomograph (Super PETT I) , 1982, IEEE Transactions on Medical Imaging.

[4]  Victor J. Sank,et al.  POTENTIAL ADVANTAGES OF A CESIUM FLUORIDE SCINTILLATOR FOR A TIME‐OF‐FLIGHT POSITRON CAMERA , 1980, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[5]  C. Bohm,et al.  A Computer Assisted Ringdector Positron Camera System for Reconstruction Tomography of the Brain , 1978 .

[6]  R. Mcintyre,et al.  Multi-element reachthrough avalanche photodiodes , 1984, IEEE Transactions on Electron Devices.

[7]  R. Nutt,et al.  A Multicrystal Two Dimensional BGO Detector System for Positron Emission Tomography , 1986, IEEE Transactions on Nuclear Science.

[8]  J. B. Barton,et al.  A High Resolution Detection System for Positron Tomography , 1983, IEEE Transactions on Nuclear Science.

[9]  Michel M. Ter-Pogossian,et al.  Super PETT I: A Positron Emission Tomograph Utilizing Photon Time-of-Flight Information , 1983, IEEE Transactions on Medical Imaging.

[10]  Ronald H. Huesman,et al.  The Donner 280-Crystal High Resolution Positron Tomograph , 1979, IEEE Transactions on Nuclear Science.

[11]  M E Phelps,et al.  Performance evaluation of a positron tomograph designed for brain imaging. , 1983, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[12]  O. H. Nestor,et al.  BISMUTHGERMANATE: A HIGH-ZGAMMA-RAY AND CHARGEDPARTICLEDETECTOR , 1975 .

[13]  R. K. Hartz,et al.  Dynamic Imaging with High Resolution Time-of-Flight PET Camera - TOFPET I , 1984, IEEE Transactions on Nuclear Science.

[14]  E. Hoffman,et al.  Quantitation in Positron Emission Computed Tomography: 4. Effect of Accidental Coincidences , 1981, Journal of computer assisted tomography.

[15]  Michael E. Phelps,et al.  Dynamic, Gated and High Resolution Imaging with the ECAT III , 1986, IEEE Transactions on Nuclear Science.

[16]  M E Phelps,et al.  Quantitation in Positron Emission Computed Tomography: 6. Effect of Nonuniform Resolution , 1982, Journal of computer assisted tomography.

[17]  Ronald H. Huesman,et al.  Imaging Properties of a Positron Tomograph with 280 Bgo Crystals , 1981, IEEE Transactions on Nuclear Science.

[18]  R. Lecomte,et al.  Scintillation Detection with Large-Area Reach-Through Avalanche Photodiodes , 1984, IEEE Transactions on Nuclear Science.

[19]  Positome II: A High Efficiency Positron Imaging Device for Dynamic Brain Studies , 1979 .

[20]  Stephen E. Derenzo,et al.  Initial Characterization of a Bgo-Photodiode Detector for High Resolution Positron Emission Tomography , 1984, IEEE Transactions on Nuclear Science.

[21]  E. Hoffman,et al.  Quantitation in Positron Emission Computed Tomography: 1. Effect of Object Size , 1979, Journal of computer assisted tomography.

[22]  M E Phelps,et al.  ECAT: a new computerized tomographic imaging system for positron-emitting radiopharmaceuticals. , 1978, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[23]  E. J. Hoffman,et al.  ECAT III -- Basic Design Considerations , 1983, IEEE Transactions on Nuclear Science.

[24]  K. Takagi,et al.  Cerium‐activated Gd2SiO5 single crystal scintillator , 1983 .

[25]  A. R. Ricci,et al.  Prospects for both precision and accuracy in positron emission tomography , 1984, Annals of neurology.

[26]  E. J. Hoffman,et al.  Investigation of a Technique for Providing a Pseudo-Continuous Detector Ring for Positron Tomography , 1982, IEEE Transactions on Nuclear Science.

[27]  M Dahlbom,et al.  Hybrid Mercuric Iodide (HgI2) - Gadolinium Orthosilicate (GSO) Detector for PET , 1985, IEEE Transactions on Nuclear Science.

[28]  C. Thompson,et al.  Detector Identification with Four BGO Crystals on a Dual PMT , 1984, IEEE Transactions on Nuclear Science.

[29]  T. Greitz,et al.  A Four Ring Positron Camera System for Emission Tomography of the Brain , 1982, IEEE Transactions on Nuclear Science.

[30]  C. Bohm,et al.  Correction for Scattered Radiation in a Ring Detector Positron Camera by Integral Transformation of the Projections , 1983, Journal of computer assisted tomography.

[31]  S. Derenzo Monte Carlo Calculations of the Detection Efficiency of Arrays of Nai(Tl), Bgo, Csf, Ge, and Plastic Detectors for 511 Kev Photons , 1981, IEEE Transactions on Nuclear Science.

[32]  Michel M. Ter-Pogossian,et al.  Performance Study of PETT VI, a Positron Computed Tomograph with 288 Cesium Fluoride Detectors , 1982, IEEE Transactions on Nuclear Science.

[33]  G. Entine,et al.  Scintillation Detectors Using Large Area Silicon Avalanche Photodiodes , 1983, IEEE Transactions on Nuclear Science.

[34]  R. Lecomte,et al.  Performance Characteristics of BGO-Silicon Avalanche Photodiode Detectors for PET , 1985, IEEE Transactions on Nuclear Science.

[35]  D. Chesler,et al.  Design of a Cylindrical Shaped Scintillation Camera for Positron Tomographs , 1985, IEEE Transactions on Nuclear Science.