Monomial-Cartesian codes and their duals, with applications to LCD codes, quantum codes, and locally recoverable codes

[1]  Gretchen L. Matthews,et al.  Affine Cartesian codes with complementary duals , 2018, Finite Fields Their Appl..

[2]  Sihem Mesnager,et al.  Linear Codes Over 𝔽q Are Equivalent to LCD Codes for q>3 , 2018, IEEE Trans. Inf. Theory.

[3]  Peter Beelen,et al.  Generalized Hamming weights of affine Cartesian codes , 2017, Finite Fields Their Appl..

[4]  Cícero Carvalho,et al.  On the next-to-minimal weight of affine cartesian codes , 2017, Finite Fields Their Appl..

[5]  Carlos Galindo,et al.  On the distance of stabilizer quantum codes from J-affine variety codes , 2016, Quantum Information Processing.

[6]  Claude Carlet,et al.  Complementary dual codes for counter-measures to side-channel attacks , 2016, Adv. Math. Commun..

[7]  Carlos Galindo,et al.  Stabilizer quantum codes from J-affine variety codes and a new Steane-like enlargement , 2015, Quantum Information Processing.

[8]  Hiram H. López,et al.  Projective Nested Cartesian Codes , 2014, 1411.6819.

[9]  Ivan Soprunov,et al.  Lattice polytopes in coding theory , 2014, Journal of Algebra Combinatorics Discrete Structures and Applications.

[10]  Itzhak Tamo,et al.  A Family of Optimal Locally Recoverable Codes , 2013, IEEE Transactions on Information Theory.

[11]  Cícero Carvalho,et al.  On the second Hamming weight of some Reed-Muller type codes , 2013, Finite Fields Their Appl..

[12]  Rafael H. Villarreal,et al.  Affine cartesian codes , 2012, Designs, Codes and Cryptography.

[13]  Olav Geil,et al.  Weighted Reed–Muller codes revisited , 2011, Des. Codes Cryptogr..

[14]  S. Bulygin,et al.  Decoding and Finding the Minimum Distance with Gröbner Bases: History and New Insights , 2010 .

[15]  Stanislav Bulygin,et al.  Bounded distance decoding of linear error-correcting codes with Gröbner bases , 2009, J. Symb. Comput..

[16]  Ivan Soprunov,et al.  Bringing Toric Codes to the Next Dimension , 2009, SIAM J. Discret. Math..

[17]  Ivan Soprunov,et al.  Toric Surface Codes and Minkowski Length of Polygons , 2008, SIAM J. Discret. Math..

[18]  Diego Ruano,et al.  On the structure of generalized toric codes , 2006, J. Symb. Comput..

[19]  Pradeep Kiran Sarvepalli,et al.  On Quantum and Classical BCH Codes , 2006, IEEE Transactions on Information Theory.

[20]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.

[21]  H. Tapia-Recillas,et al.  Reed-Muller-Type Codes Over the Segre Variety , 2002 .

[22]  David Joyner,et al.  Toric Codes over Finite Fields , 2002, Applicable Algebra in Engineering, Communication and Computing.

[23]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[24]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[25]  Joe W. Harris,et al.  Algebraic Geometry: A First Course , 1995 .

[26]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[27]  Victor K.-W. Wei,et al.  On the generalized Hamming weights of product codes , 1993, IEEE Trans. Inf. Theory.

[28]  James L. Massey,et al.  Linear codes with complementary duals , 1992, Discret. Math..

[29]  T. Willmore Algebraic Geometry , 1973, Nature.

[30]  Cícero Carvalho,et al.  Projective Reed-Muller type codes on rational normal scrolls , 2016, Finite Fields Their Appl..

[31]  Ruud Pellikaan,et al.  Decoding Linear Error-Correcting Codes up to Half the Minimum Distance with Gröbner Bases , 2009, Gröbner Bases, Coding, and Cryptography.

[32]  Maria Bras-Amorós,et al.  Duality for some families of correction capability optimized evaluation codes , 2008, Adv. Math. Commun..

[33]  Cem Güneri Algebraic geometric codes: basic notions , 2008 .

[34]  G. R. Pellikaan,et al.  Decoding error-correcting codes with Grobner bases , 2007 .

[35]  Shuhong Gao,et al.  GRÖBNER BASES , PADÉ APPROXIMATION , AND DECODING OF LINEAR CODES , 2005 .

[36]  Johan P. Hansen,et al.  Toric Surfaces and Error-correcting Codes , 2000 .

[37]  C. Rentería,et al.  Reed‐muller codes: an ideal theory approach , 1997 .

[38]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[39]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .