Dynamic mineral clouds on HD 189733b I. 3D RHD with kinetic, non-equilibrium cloud formation

Observations of exoplanet atmospheres have revealed the presence of cloud particles in their atmospheres. 3D modelling of cloud formation in atmospheres of extrasolar planets coupled to the atmospheric dynamics has long been a challenge. We investigate the thermo-hydrodynamic properties of cloud formation processes in the atmospheres of hot Jupiter exoplanets. We simulate the dynamic atmosphere of HD 189733b with a 3D model that couples 3D radiative-hydrodynamics with a kinetic, microphysical mineral cloud formation module designed for RHD/GCM exoplanet atmosphere simulations. Our simulation includes the feedback effects of cloud advection and settling, gas phase element advection and depletion/replenishment and the radiative effects of cloud opacity. We model the cloud particles as a mix of mineral materials which change in size and composition as they travel through atmospheric thermo-chemical environments. All local cloud properties such as number density, grain size and material composition are time-dependently calculated. Gas phase element depletion as a result of cloud formation is included in the model. In-situ \textit{effective medium theory} and Mie theory is applied to calculate the wavelength dependent opacity of the cloud component. We present a 3D cloud structure of a chemically complex, gaseous atmosphere of the hot Jupiter HD 189733b. Mean cloud particle sizes are typically sub-micron (0.01-0.5 $\mu$m) at pressures less than 1 bar with hotter equatorial regions containing the smallest grains. Denser cloud structures occur near terminator regions and deeper ($\sim$ 1 bar) atmospheric layers. Silicate materials such as MgSiO$_{3}$[s] are found to be abundant at mid-high latitudes, while TiO$_{2}$[s] and SiO$_{2}$[s] dominate the equatorial regions.

[1]  E. Agol,et al.  THE IMPACT OF CIRCUMPLANTARY JETS ON TRANSIT SPECTRA AND TIMING OFFSETS FOR HOT JUPITERS , 2011, 1110.4377.

[2]  2D models for dust-driven AGB star winds , 2006, astro-ph/0602371.

[3]  M. Marley,et al.  THE ATMOSPHERIC CIRCULATION OF A NINE-HOT-JUPITER SAMPLE: PROBING CIRCULATION AND CHEMISTRY OVER A WIDE PHASE SPACE , 2016, 1602.06733.

[4]  A. D. Etangs,et al.  Rayleigh scattering in the transit spectrum of HD 189733b , 2008, 0802.3228.

[5]  Accuracy tests of radiation schemes used in hot Jupiter global circulation models , 2014, 1402.0814.

[6]  M. Marley,et al.  THE ATMOSPHERIC CIRCULATION OF THE SUPER EARTH GJ 1214b: DEPENDENCE ON COMPOSITION AND METALLICITY , 2014, 1401.1898.

[7]  D. Ehrenreich,et al.  Gran Telescopio Canarias OSIRIS transiting exoplanet atmospheric survey: detection of potassium in XO-2b from narrowband spectrophotometry , 2010, 1008.4795.

[8]  M. Marley,et al.  ATMOSPHERIC CIRCULATION OF ECCENTRIC HOT JUPITER HAT-P-2B , 2011, 1409.5108.

[9]  D. Saumon,et al.  NEGLECTED CLOUDS IN T AND Y DWARF ATMOSPHERES , 2012, 1206.4313.

[10]  Tucson,et al.  HST hot-Jupiter transmission spectral survey: haze in the atmosphere of WASP-6b , 2014, 1411.4567.

[11]  H. Looyenga Dielectric constants of heterogeneous mixtures , 1965 .

[12]  N. Wood,et al.  The unified model, a fully-compressible, non-hydrostatic, deep atmosphere global circulation model, applied to hot Jupiters - ENDGame for a HD 209458b test case , 2014 .

[13]  C. Helling,et al.  Dust in brown dwarfs. II. The coupled problem of dust formation and sedimentation , 2003 .

[14]  S. Seager,et al.  A SEMI-ANALYTICAL MODEL OF VISIBLE-WAVELENGTH PHASE CURVES OF EXOPLANETS AND APPLICATIONS TO KEPLER- 7 B AND KEPLER- 10 B , 2015, 1501.03876.

[15]  Vivien Parmentier,et al.  Pseudo 2D chemical model of hot-Jupiter atmospheres: application to HD 209458b and HD 189733b , 2014, 1403.0121.

[16]  Vivien Parmentier,et al.  TRANSITIONS IN THE CLOUD COMPOSITION OF HOT JUPITERS , 2016, 1602.03088.

[17]  U. Nowak,et al.  Dust in brown dwarfs - IV. Dust formation and driven turbulence on mesoscopic scales , 2004, astro-ph/0404272.

[18]  David Charbonneau,et al.  MULTIWAVELENGTH CONSTRAINTS ON THE DAY–NIGHT CIRCULATION PATTERNS OF HD 189733b , 2008, 0802.1705.

[19]  B. Demory,et al.  UNDERSTANDING TRENDS ASSOCIATED WITH CLOUDS IN IRRADIATED EXOPLANETS , 2013, 1309.5956.

[20]  Shang-min Tsai,et al.  THREE-DIMENSIONAL STRUCTURES OF EQUATORIAL WAVES AND THE RESULTING SUPER-ROTATION IN THE ATMOSPHERE OF A TIDALLY LOCKED HOT JUPITER , 2014, 1405.0003.

[21]  C. Helling,et al.  Inhomogeneous cloud coverage through the Coulomb explosion of dust in substellar atmospheres , 2015, 1505.04592.

[22]  C. Helling,et al.  Dust in brown dwarfs and extra-solar planets , 2008, Astronomy & Astrophysics.

[23]  A. Burrows,et al.  Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres , 2006, astro-ph/0607211.

[24]  Sara Seager,et al.  INFERENCE OF INHOMOGENEOUS CLOUDS IN AN EXOPLANET ATMOSPHERE , 2013, 1309.7894.

[25]  Simon Albrecht,et al.  The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b , 2010, Nature.

[26]  C. Helling,et al.  Glittery clouds in exoplanetary atmospheres? , 2009, International Journal of Astrobiology.

[27]  D. Juncher,et al.  Modelling the local and global cloud formation on HD 189733b , 2015, 1505.06576.

[28]  Pin Chen,et al.  Submitted to the Astrophysical Journal Letters Molecular Signatures in the Near Infrared Dayside Spectrum of , 2022 .

[29]  W. Thi,et al.  Dust in brown dwarfs and extra-solar planets - I. Chemical composition and spectral appearance of quasi-static cloud layers , 2008, 0803.4315.

[30]  Yohai Kaspi,et al.  ATMOSPHERIC DYNAMICS OF BROWN DWARFS AND DIRECTLY IMAGED GIANT PLANETS , 2012, 1210.7573.

[31]  R. Klein,et al.  Dust in brown dwarfs - I. Dust formation under turbulent conditions on microscopic scales , 2001 .

[32]  E. Sedlmayr,et al.  Self-consistent modeling of the outflow from the O-rich Mira IRC –20197 , 2003 .

[33]  Adam Burrows,et al.  L AND T DWARF MODELS AND THE L TO T TRANSITION , 2006 .

[34]  S. Aigrain,et al.  HST hot-Jupiter transmission spectral survey: detection of potassium in WASP-31b along with a cloud deck and Rayleigh scattering , 2014, 1410.7611.

[35]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[36]  A. Schuster On the absorption and scattering of light , 1920 .

[37]  A. Misra,et al.  3D MODELING OF GJ1214b's ATMOSPHERE: FORMATION OF INHOMOGENEOUS HIGH CLOUDS AND OBSERVATIONAL IMPLICATIONS , 2015, 1510.01706.

[38]  Mark Clampin,et al.  INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE , 2013, 1302.1141.

[39]  D. Lin,et al.  RADIATIVE HYDRODYNAMIC SIMULATIONS OF HD209458b: TEMPORAL VARIABILITY , 2010, 1001.0982.

[40]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[41]  Alain Lecavelier des Etangs,et al.  THE DEEP BLUE COLOR OF HD 189733b: ALBEDO MEASUREMENTS WITH HUBBLE SPACE TELESCOPE/SPACE TELESCOPE IMAGING SPECTROGRAPH AT VISIBLE WAVELENGTHS , 2013, 1307.3239.

[42]  David Charbonneau,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: COUPLED RADIATIVE-DYNAMICAL GENERAL CIRCULATION MODEL SIMULATIONS OF HD 189733b and HD 209458b , 2008, 0809.2089.

[43]  R. Perna,et al.  THE EFFECTS OF IRRADIATION ON HOT JOVIAN ATMOSPHERES: HEAT REDISTRIBUTION AND ENERGY DISSIPATION , 2012, 1201.5391.

[44]  J. Leconte,et al.  3D MODELING OF GJ1214B’S ATMOSPHERE: VERTICAL MIXING DRIVEN BY AN ANTI-HADLEY CIRCULATION , 2015, 1509.06814.

[45]  K. Menou,et al.  THREE-DIMENSIONAL MODELING OF HOT JUPITER ATMOSPHERIC FLOWS , 2009, 0907.2692.

[46]  M. Marley,et al.  ATMOSPHERIC CIRCULATION OF ECCENTRIC HOT NEPTUNE GJ436b , 2010, 1007.2942.

[47]  N. Crouzet,et al.  WATER VAPOR IN THE SPECTRUM OF THE EXTRASOLAR PLANET HD 189733b. I. THE TRANSIT , 2014, 1407.2462.

[48]  Alexei Korolev,et al.  Supersaturation of Water Vapor in Clouds , 2003 .

[49]  Gautam Vasisht,et al.  The presence of methane in the atmosphere of an extrasolar planet , 2008, Nature.

[50]  Dust in the Photospheric Environment: Unified Cloudy Models of M, L, and T Dwarfs , 2002, astro-ph/0204401.

[51]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[52]  A. Showman,et al.  3D mixing in hot Jupiters atmospheres. I. Application to the day/night cold trap in HD 209458b , 2013, 1301.4522.

[53]  C. Helling,et al.  Dust in brown dwarfs - III. Formation and structure of quasi-static cloud layers , 2004 .

[54]  Xi Zhang,et al.  ATMOSPHERIC CIRCULATION OF BROWN DWARFS: JETS, VORTICES, AND TIME VARIABILITY , 2014, 1403.2143.

[55]  Kevin Heng,et al.  Atmospheric circulation of tidally locked exoplanets: a suite of benchmark tests for dynamical solvers , 2010, 1010.1257.

[56]  Drake Deming,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2016, Nature.

[57]  Avi Shporer,et al.  STUDYING ATMOSPHERE-DOMINATED HOT JUPITER KEPLER PHASE CURVES: EVIDENCE THAT INHOMOGENEOUS ATMOSPHERIC REFLECTION IS COMMON , 2015, 1504.00498.

[58]  L. Polvani,et al.  EQUATORIAL SUPERROTATION ON TIDALLY LOCKED EXOPLANETS , 2011, 1103.3101.

[59]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[60]  S. Aigrain,et al.  The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations , 2012, 1210.4163.

[61]  Ray Jayawardhana,et al.  CHANGING PHASES OF ALIEN WORLDS: PROBING ATMOSPHERES OF KEPLER PLANETS WITH HIGH-PRECISION PHOTOMETRY , 2014, 1407.2245.

[62]  J. Manners,et al.  The mineral clouds on HD 209458b and HD 189733b , 2016, 1603.04022.

[63]  Hannah R. Wakeford,et al.  Transmission spectral properties of clouds for hot Jupiter exoplanets , 2014, 1409.7594.

[64]  K. Heng,et al.  On the effects of clouds and hazes in the atmospheres of hot Jupiters: semi‐analytical temperature–pressure profiles , 2011, 1107.1390.

[65]  C. Helling,et al.  Dust in brown dwarfs. V. Growth and evaporation of dirty dust grains , 2006 .

[66]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[67]  E. Kempton,et al.  THE ATMOSPHERIC CIRCULATION AND OBSERVABLE PROPERTIES OF NON-SYNCHRONOUSLY ROTATING HOT JUPITERS , 2014, 1402.4833.

[68]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[69]  J. Fortney,et al.  THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION OF WARM AND HOT JUPITERS: EFFECTS OF ORBITAL DISTANCE, ROTATION PERIOD, AND NONSYNCHRONOUS ROTATION , 2014, 1411.4731.

[70]  B. Demory,et al.  Optical phase curves as diagnostics for aerosol composition in exoplanetary atmospheres , 2016, 1601.03050.

[71]  Eric Agol,et al.  Three-dimensional radiative-hydrodynamical simulations of the highly irradiated short-period exoplanet HD 189733b , 2012, 1211.1709.

[72]  T. Komacek,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: DAYSIDE–NIGHTSIDE TEMPERATURE DIFFERENCES , 2016, 1601.00069.

[73]  N. Gibson,et al.  Hubble Space Telescope transmission spectroscopy of the exoplanet HD 189733b: high‐altitude atmospheric haze in the optical and near‐ultraviolet with STIS , 2011, 1103.0026.

[74]  K. Heng,et al.  Atmospheric Dynamics of Hot Exoplanets , 2014, 1407.4150.