Low Cycle Fatigue Fracture Behaviour of Conventional and Damage Tolerant Microstructures of Inconel 718 at 650°C

[1]  H. Nickel,et al.  Influence of time and temperature dependent processes on strain controlled low cycle fatigue behavior of alloy 617 , 1988 .

[2]  N. Bellinger,et al.  DEVELOPMENT OF A DAMAGE TOLERANT MICROSTRUCTURE FOR INCONEL 718 TURBINE DISC MATERIAL , 1988 .

[3]  S. Antolovich,et al.  Effects of grain size and precipitate size on the fatigue crack growth behavior of alloy 718 at 427 °C , 1987 .

[4]  L. James The effect of grain size upon the fatigue-crack propagation behavior of alloy 718 under hold-time cycling at elevated temperature , 1986 .

[5]  L. James,et al.  Effect of Heat-Treatment Upon the Fatigue-Crack Growth Behavior of Alloy 718 Weldments—Part II: Microscopic Behavior , 1985 .

[6]  S. Antolovich,et al.  A study of fatigue damage mechanisms in Waspaloy from 25 to 800 C , 1984 .

[7]  A. Pineau,et al.  The effect of microstructure and environment on the crack growth behaviour of Inconel 718 alloy at 650 °C under fatigue, creep and combined loading , 1982 .

[8]  R. E. Frishmuth,et al.  Temperature Dependent Deformation Mechanisms of Alloy 718 in Low Cycle Fatigue , 1981 .

[9]  A. Pineau,et al.  Low cycle fatigue behavior of inconel 718 at 298 K and 823 K , 1977 .

[10]  J. E. Doherty,et al.  Precipitation of γ in the γ′of nickel-base superalloys , 1974, Metallurgical and Materials Transactions B.

[11]  D. S. Duvall,et al.  Coherency strengthening in Ni base alloys hardened by DO22 γ′ precipitates , 1974, Metallurgical and Materials Transactions B.

[12]  R. C. Hall The Metallurgy of Alloy 718 , 1967 .