PERSISTENT HOMOCLINIC ORBITS FOR A PERTURBED NONLINEAR SCHRODINGER EQUATION

The persistence of homoclinic orbits for certain perturbations of the integrable nonlinear Schrodinger equation under even periodic boundary conditions is established. More specifically, the existence of a symmetric pair of homoclinic orbits is established for the perturbed NLS equation through an argument that combines Melnikov analysis with a geometric singular perturbation theory for the PDE. © 1996 John Wiley & Sons, Inc.

[1]  Christopher K. R. T. Jones,et al.  Tracking invariant manifolds up to exponentially small errors , 1996 .

[2]  Darryl D. Holm,et al.  Low-dimensional behaviour in the complex Ginzburg-Landau equation , 1988 .

[3]  Neil Fenichel,et al.  Asymptotic stability with rate conditions for dynamical systems , 1974 .

[4]  D. McLaughlin,et al.  A quasi-periodic route to chaos in a near-integrable pde , 1986 .

[5]  S. Wiggins Normally Hyperbolic Invariant Manifolds in Dynamical Systems , 1994 .

[6]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[7]  W. Magnus,et al.  Hill's equation , 1966 .

[8]  David W. McLaughlin,et al.  Geometry of the modulational instability III. Homoclinic orbits for the periodic sine-Gordon equation , 1990 .

[9]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[10]  G. Kovačič Singular perturbation theory for homoclinic orbits in a class of near-integrable dissipative systems , 1995 .

[11]  Christopher K. R. T. Jones,et al.  Tracking invariant manifolds with di erential forms in singularly per-turbed systems , 1994 .

[12]  David W. McLaughlin,et al.  Morse and Melnikov functions for NLS Pde's , 1994 .

[13]  J. Pöschel,et al.  Inverse spectral theory , 1986 .

[14]  G. Kovačič Dissipative dynamics of orbits homoclinic to a resonance band , 1992 .

[15]  S. Wiggins,et al.  Homoclinic Orbits in a Four Dimensional Model of a Perturbed NLS Equation: A Geometric Singular Perturbation Study , 1996 .

[16]  Stephen Wiggins,et al.  Homoclinic orbits and chaos in discretized perturbed NLS systems: Part II. Symbolic dynamics , 1997 .

[17]  S. Smale Differentiable dynamical systems , 1967 .

[18]  D. McLaughlin Whiskered Tori and Chaotic Behavior in Nonlinear Waves , 1995 .

[19]  The center manifold and bifurcations of damped and driven sine-Gordon breathers , 1992 .

[20]  John M. Ball,et al.  Saddle Point Analysis for an Ordinary Differential Equation in a Banach Space, and an Application to Dynamic Buckling of a Beam , 1973 .

[21]  Shui-Nee Chow,et al.  Invariant manifolds for flows in Banach spaces , 1988 .

[22]  G. Kovačič Singular perturbation theory for homoclinic orbits in a class of near-integrable Hamiltonian systems , 1993 .

[23]  D. McLaughlin Whiskered tori for NLS equations , 1993 .

[24]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[25]  B. Grébert,et al.  Gaps of One-Dimensional Periodic AKNS Systems , 1993 .

[26]  G. Kovačič,et al.  Orbits homoclinic to resonances, with an application to chaos in a model of the forced and damped sine-Gordon equation , 1992 .

[27]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[28]  David W. McLaughlin,et al.  Whiskered Tori for Integrable Pde’s: Chaotic Behavior in Near Integrable Pde’s , 1995 .

[29]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[30]  Charles R. Doering,et al.  On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation , 1990 .

[31]  Rainer Grauer,et al.  An explicit description of the global attractor of the damped and driven sine-Gordon equation , 1994 .

[32]  Peter W. Bates,et al.  Invariant Manifolds for Semilinear Partial Differential Equations , 1989 .

[33]  W. Strauss Nonlinear invariant wave equations , 1978 .

[34]  R. Téman,et al.  Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations , 1988 .

[35]  Shui-Nee Chow,et al.  Smooth Invariant Foliations in Infinite Dimensional Spaces , 1991 .

[36]  Jerrold E. Marsden,et al.  A partial differential equation with infinitely many periodic orbits: Chaotic oscillations of a forced beam , 1981 .

[37]  Jerrold E. Marsden,et al.  Melnikov’s method and Arnold diffusion for perturbations of integrable Hamiltonian systems , 1982 .

[38]  W. J. Cunningham,et al.  Introduction to Nonlinear Analysis , 1959 .

[39]  Jerrold E. Marsden,et al.  Horseshoes in perturbations of Hamiltonian systems with two degrees of freedom , 1982 .