The Vertical Profile of Embedded Trees

Consider a rooted binary tree with $n$ nodes. Assign with the root the abscissa 0, and with the left (resp. right) child of a node of abscissa $i$ the abscissa $i-1$ (resp. $i+1$). We prove that the number of binary trees of size $n$ having exactly $n_i$ nodes at abscissa $i$, for $l \leq i \leq r$ (with $n = \sum_i n_i$), is $$ \frac{n_0}{n_l n_r} {{n_{-1}+n_1} \choose {n_0-1}} \prod_{l\le i\le r \atop i\not = 0}{{n_{i-1}+n_{i+1}-1} \choose {n_i-1}}, $$ with $n_{l-1}=n_{r+1}=0$. The sequence $(n_l, \dots, n_{-1};n_0, \dots n_r)$ is called the vertical profile of the tree. The vertical profile of a uniform random tree of size $n$ is known to converge, in a certain sense and after normalization, to a random mesure called the integrated superbrownian excursion, which motivates our interest in the profile. We prove similar looking formulas for other families of trees whose nodes are embedded in $Z$. We also refine these formulas by taking into account the number of nodes at abscissa j whose parent lies at abscissa $i$, and/or the number of vertices at abscissa i having a prescribed number of children at abscissa $j$, for all $i$ and $j$. Our proofs are bijective.

[1]  Jean-Franccois Marckert,et al.  Invariance principles for random bipartite planar maps , 2005, math/0504110.

[2]  A. Mokkadem,et al.  States Spaces of the Snake and Its Tour—Convergence of the Discrete Snake , 2003 .

[3]  Lajos Takács,et al.  Conditional limit theorems for branching processes , 1991 .

[4]  Michael Drmota,et al.  On the profile of random trees , 1997, Random Struct. Algorithms.

[5]  Philippe Chassaing,et al.  Random planar lattices and integrated superBrownian excursion , 2002, math/0205226.

[6]  D. Aldous Stochastic Analysis: The Continuum random tree II: an overview , 1991 .

[7]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[8]  Svante Janson,et al.  The Center of Mass of the ISE and the Wiener Index of Trees , 2003, math/0309284.

[9]  Svante Janson,et al.  Convergence of Discrete Snakes , 2005 .

[10]  W. T. Tutte The dissection of equilateral triangles into equilateral triangles , 1948, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  Gilbert Labelle,et al.  Two bijective proofs for the arborescent form of the Good-Lagrange formula and some applications to colored rooted trees and cacti , 2003, Theor. Comput. Sci..

[12]  J. L. Gall,et al.  Spatial Branching Processes, Random Snakes, and Partial Differential Equations , 1999 .

[13]  Gordon Slade,et al.  The Scaling Limit of Lattice Trees in High Dimensions , 1998 .

[14]  Svante Janson,et al.  Left and Right Pathlengths in Random Binary Trees , 2006, Algorithmica.

[15]  I. J. Good,et al.  Generalizations to several variables of Lagrange's expansion, with applications to stochastic processes , 1960, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  P. Francesco,et al.  Geodesic distance in planar graphs , 2003, cond-mat/0303272.

[17]  R. Bacher On the enumeration of labelled hypertrees and of labelled bipartite trees , 2011, 1102.2708.

[18]  Jean-François Marckert,et al.  The rotation correspondence is asymptotically a dilatation , 2004, Random Struct. Algorithms.

[19]  David Aldous,et al.  Tree-based models for random distribution of mass , 1993 .

[20]  Svante Janson,et al.  THE DENSITY OF THE ISE AND LOCAL LIMIT LAWS FOR EMBEDDED TREES , 2005 .

[21]  Guillaume Chapuy,et al.  The structure of unicellular maps, and a connection between maps of positive genus and planar labelled trees , 2008, 0804.0546.

[22]  Jean-François Delmas,et al.  Computation of Moments for the Length of the OneDimensional ISE Support , 2003 .

[23]  Conditioned Brownian trees , 2005, math/0501066.

[24]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[25]  G. Miermont Invariance principles for spatial multitype Galton–Watson trees , 2006, math/0610807.

[26]  Radius and profile of random planar maps with faces of arbitrary degrees , 2007, 0706.3334.

[27]  R. Cori,et al.  Planar Maps are Well Labeled Trees , 1981, Canadian Journal of Mathematics.

[28]  Alejandro H. Morales,et al.  Counting trees using symmetries , 2012, J. Comb. Theory, Ser. A.

[29]  Ira M. Gessel,et al.  A combinatorial proof of the multivariable lagrange inversion formula , 1987, J. Comb. Theory, Ser. A.

[30]  Svante Janson,et al.  Distances between pairs of vertices and vertical profile in conditioned Galton–Watson trees , 2008, Random Struct. Algorithms.

[31]  J. Moon,et al.  On the Altitude of Nodes in Random Trees , 1978, Canadian Journal of Mathematics.

[32]  Helmut Prodinger,et al.  Level number sequences for trees , 1987, Discret. Math..

[33]  Markus Kuba,et al.  A Note on Naturally Embedded Ternary Trees , 2009, Electron. J. Comb..

[34]  Gerald G. Brown,et al.  On Random Binary Trees , 1984, Math. Oper. Res..

[35]  A. Joyal Une théorie combinatoire des séries formelles , 1981 .

[36]  J. Bouttier,et al.  Statistics of planar graphs viewed from a vertex: A study via labeled trees , 2003, cond-mat/0307606.