Applying fuzzy goal programming to project management decisions with multiple goals in uncertain environments

In real-life situations, the project manager must handle multiple conflicting goals and these conflicting goals are normally fuzzy owing to information is incomplete and unavailable. This study develops a two-phase fuzzy goal programming (FGP) method for solving the project management (PM) decision problems with multiple goals in uncertain environments. The original multi-objective linear programming (MOLP) model designed here attempts to simultaneously minimize total project costs, total completion time and total crashing costs with reference to direct costs, indirect and contractual penalty costs, duration of activities and the constraint of available budget. An industrial case is implemented to demonstrate the feasibility of applying the proposed two-phase FGP method to practical PM decisions. The contribution of this study lies in presenting a fuzzy mathematical programming methodology to fuzzy multi-objective PM decisions, and provides a systematic decision-making framework that facilitates the decision maker to interactively adjust the search direction until the preferred efficient solution is obtained.

[1]  Tien-Fu Liang,et al.  Project management decisions with multiple fuzzy goals , 2004 .

[2]  A. V. Yazenin,et al.  Fuzzy and stochastic programming , 1987 .

[3]  C. Hwang,et al.  Fuzzy Mathematical Programming: Methods and Applications , 1995 .

[4]  Gülfem Tuzkaya,et al.  A two-phase possibilistic linear programming methodology for multi-objective supplier evaluation and order allocation problems , 2008, Inf. Sci..

[5]  Peng-Yeng Yin,et al.  Optimal multiple-objective resource allocation using hybrid particle swarm optimization and adaptive resource bounds technique , 2008 .

[6]  T. Kotiah,et al.  Another Look at the PERT Assumptions , 1973 .

[7]  H. Rommelfanger Fuzzy linear programming and applications , 1996 .

[8]  B. Werners An interactive fuzzy programming system , 1987 .

[9]  Richard F. Deckro,et al.  Resource constrained project crashing , 1989 .

[10]  R-C. Wang,et al.  APPLICATION OF MULTIPLE FUZZY GOALS PROGRAMMING TO PROJECT MANAGEMENT DECISIONS , 2006 .

[11]  K. MacCrimmon,et al.  An Analytical Study of the PERT Assumptions , 1964 .

[12]  Didier Dubois,et al.  Computing improved optimal solutions to max-min flexible constraint satisfaction problems , 1999, Eur. J. Oper. Res..

[13]  I. Kurtulus,et al.  Multi-Project Scheduling: Categorization of Heuristic Rules Performance , 1982 .

[14]  E. Hannan Linear programming with multiple fuzzy goals , 1981 .

[15]  Pawel Zielinski,et al.  Critical path analysis in the network with fuzzy activity times , 2001, Fuzzy Sets Syst..

[16]  Robert A. Russell,et al.  A comparison of heuristics for scheduling projects with cash flows and resource restrictions , 1986 .

[17]  Mohamed Haouari,et al.  A bi-objective model for robust resource-constrained project scheduling , 2005 .

[18]  Mitsuo Gen,et al.  An efficient approach for large scale project planning based on fuzzy Delphi method , 1995, Fuzzy Sets Syst..

[19]  Dimitri Golenko-Ginzburg,et al.  Stochastic network project scheduling with non-consumable limited resources , 1997 .

[20]  Edward W. Davis,et al.  A Comparison of Heuristic and Optimum Solutions in Resource-Constrained Project Scheduling , 1975 .

[21]  M. L. Hussein,et al.  A fuzzy dynamic approach to the multicriterion resource allocation problem , 1995 .

[22]  Roman Slowinski,et al.  Fuzzy priority heuristics for project scheduling , 1996, Fuzzy Sets Syst..

[23]  Timothy Soper,et al.  A shortest path problem on a network with fuzzy arc lengths , 2000, Fuzzy Sets Syst..

[24]  Chen-Tung Chen,et al.  Order-fulfillment ability analysis in the supply-chain system with fuzzy operation times , 2006 .

[25]  W. H. Parks,et al.  The Use of the Compound Poisson in Pert , 1969 .

[26]  M. K. Luhandjula Compensatory operators in fuzzy linear programming with multiple objectives , 1982 .

[27]  R. Słowiński A multicriteria fuzzy linear programming method for water supply system development planning , 1986 .

[28]  Tien-Fu Liang,et al.  Application of fuzzy sets to multi-objective project management decisions , 2009, Int. J. Gen. Syst..

[29]  H. Zimmermann Fuzzy programming and linear programming with several objective functions , 1978 .

[30]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[31]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[32]  Jorge Pinho de Sousa,et al.  Using metaheuristics in multiobjective resource constrained project scheduling , 2000, Eur. J. Oper. Res..

[33]  Liang-Hsuan Chen,et al.  Fuzzy goal programming with different importance and priorities , 2001, Eur. J. Oper. Res..

[34]  K. M. Mjelde Fuzzy resource allocation , 1986 .

[35]  Mitsuo Gen,et al.  Multiobjective resource allocation problem by multistage decision-based hybrid genetic algorithm , 2007, Appl. Math. Comput..

[36]  Ali Touran,et al.  Monte Carlo Technique with Correlated Random Variables , 1992 .

[37]  Chung-lun Li Scheduling to minimize the total resource consumption with a constraint on the sum of completion times , 1995 .

[38]  Hui Li,et al.  Computing efficient solutions to fuzzy multiple objective linear programming problems , 2006, Fuzzy Sets Syst..

[39]  Józef Łukaszewicz,et al.  Letter to the Editor-On the Estimation of Errors Introduced by Standard Assumptions Concerning the Distribution of Activity Duration in PERT Calculations , 1965 .

[40]  Saeed Karshenas,et al.  Economic optimization of construction project scheduling , 1990 .

[41]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[42]  M. Sakawa,et al.  An interactive fuzzy satisficing method for multiobjective linear fractional programming problems , 1988 .

[43]  Fabian C. Hadipriono,et al.  Nondeterministic Networking Methods , 1993 .

[44]  Zülal Güngör,et al.  An application of fuzzy goal programming to a multiobjective project network problem , 2001, Fuzzy Sets Syst..

[45]  F. Lootsma Stochastic and Fuzzy Pert , 1989 .

[46]  Richard F. Deckro,et al.  Optimization analysis for design and planning of multi-project programs , 1998, Eur. J. Oper. Res..

[47]  Didier Dubois,et al.  Refinements of the maximin approach to decision-making in a fuzzy environment , 1996, Fuzzy Sets Syst..

[48]  Hiroaki Kuwano,et al.  On the fuzzy multi-objective linear programming problem: Goal programming approach , 1996, Fuzzy Sets Syst..

[49]  Yan-Kuen Wu,et al.  Two-phase approach for solving the fuzzy linear programming problems , 1999, Fuzzy Sets Syst..

[50]  Egon Balas,et al.  PROJECT SCHEDULING WITH RESOURCE CONSTRAINTS. , 1968 .

[51]  Dimitri Golenko-Ginzburg,et al.  A heuristic for network project scheduling with random activity durations depending on the resource allocation , 1998 .

[52]  Ario Ohsato,et al.  Fuzzy critical chain method for project scheduling under resource constraints and uncertainty , 2008 .

[53]  Fariborz Jolai,et al.  A new heuristic for resource-constrained project scheduling in stochastic networks using critical chain concept , 2007, Eur. J. Oper. Res..

[54]  Sazali Yaacob,et al.  Decision making using modified s-curve membership function in fuzzy linear programming problem , 2003 .

[55]  H. Zimmermann DESCRIPTION AND OPTIMIZATION OF FUZZY SYSTEMS , 1975 .

[56]  T.-F. Liang,et al.  Project management decisions using fuzzy linear programming , 2006, Int. J. Syst. Sci..

[57]  Jing-Shing Yao,et al.  Fuzzy critical path method based on signed distance ranking of fuzzy numbers , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[58]  E. Lee,et al.  Fuzzy multiple objective programming and compromise programming with Pareto optimum , 1993 .

[59]  Masatoshi Sakawa,et al.  Fuzzy Sets and Interactive Multiobjective Optimization , 1993 .

[60]  H. Leberling On finding compromise solutions in multicriteria problems using the fuzzy min-operator , 1981 .

[61]  Elden L. Deporter,et al.  Optimization of project networks with goal programming and fuzzy linear programming , 1990 .