A CMOS Amperometric System for Multi-Neurotransmitter Detection

In vivo multi-target and selective concentration monitoring of neurotransmitters can help to unravel the brain chemical complex signaling interplay. This paper presents a dedicated integrated potentiostat transducer circuit and its selective electrode interface. A custom 2-electrode time-based potentiostat circuit was fabricated with 0.13 μm CMOS technology and provides a wide dynamic input current range of 20 pA to 600 nA with 56 μW, for a minimum sampling frequency of 1.25 kHz. A multi-working electrode chip is functionalized with carbon nanotubes (CNT)-based chemical coatings that offer high sensitivity and selectivity towards electroactive dopamine and non-electroactive glutamate. The prototype was experimentally tested with different concentrations levels of both neurotransmitter types, and results were similar to measurements with a commercially available potentiostat. This paper validates the functionality of the proposed biosensor, and demonstrates its potential for the selective detection of a large number of neurochemicals.

[1]  José M Pingarrón,et al.  Role of carbon nanotubes in electroanalytical chemistry: a review. , 2008, Analytica chimica acta.

[2]  Shu-Chung Yi,et al.  A 6-bit digital to analogue converter based on current mirrors , 2012 .

[3]  M. Laruelle,et al.  Glutamate, Dopamine, and Schizophrenia , 2003 .

[4]  Kartikeya Murari,et al.  VLSI Potentiostat Array With Oversampling Gain Modulation for Wide-Range Neurotransmitter Sensing , 2007, IEEE Transactions on Biomedical Circuits and Systems.

[5]  Po-Hung Yang,et al.  CMOS Open-Gate Ion-Sensitive Field-Effect Transistors for Ultrasensitive Dopamine Detection , 2010, IEEE Transactions on Electron Devices.

[6]  Giovanni De Micheli,et al.  New Approaches for Carbon Nanotubes-Based Biosensors and Their Application to Cell Culture Monitoring , 2012, IEEE Transactions on Biomedical Circuits and Systems.

[7]  R. Kennedy,et al.  Review of recent advances in analytical techniques for the determination of neurotransmitters. , 2009, Analytica chimica acta.

[8]  Abolhassan Noori,et al.  A cyclodextrin host-guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine. , 2011, Biosensors & bioelectronics.

[9]  Pedro M. Figueiredo,et al.  Low kickback noise techniques for CMOS latched comparators , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[10]  Sunita Bishnoi,et al.  Simultaneous determination of epinephrine and norepinephrine in human blood plasma and urine samples using nanotubes modified edge plane pyrolytic graphite electrode. , 2011, Talanta.

[11]  G. Cauwenberghs,et al.  Wide-range, picoampere-sensitivity multichannel VLSI potentiostat for neurotransmitter sensing , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[12]  K.L. Shepard,et al.  Active CMOS Sensor Array for Electrochemical Biomolecular Detection , 2008, IEEE Journal of Solid-State Circuits.

[13]  Sudip Chakraborty,et al.  Amperometric biosensing of glutamate using carbon nanotube based electrode , 2007 .

[14]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[15]  Gert Cauwenberghs,et al.  16-Channel Integrated Potentiostat for Distributed Neurochemical Sensing , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  R. Wightman,et al.  Electrochemical monitoring of biogenic amine neurotransmission in real time. , 1999, Journal of pharmaceutical and biomedical analysis.

[17]  Robert T Kennedy,et al.  In vivo measurements of neurotransmitters by microdialysis sampling. , 2006, Analytical chemistry.

[18]  J. L. Davidson,et al.  High temporal resolution electrochemical biosensor using nitrogen-incorporated nanodiamond ultra-microelectrode array , 2012, 2012 IEEE Sensors.

[19]  R. Wightman,et al.  Monitoring rapid chemical communication in the brain. , 2008, Chemical reviews.

[20]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[21]  Evangelyn C. Alocilja,et al.  Fabrication of a disposable biosensor for Escherichia Coli O157:H7 detection , 2003 .

[22]  J.G. Harris,et al.  A time-based VLSI potentiostat for ion current measurements , 2006, IEEE Sensors Journal.

[23]  Roman Genov,et al.  CMOS Neurotransmitter Microarray: 96-Channel Integrated Potentiostat With On-Die Microsensors , 2013, IEEE Transactions on Biomedical Circuits and Systems.

[24]  Michael S.-C. Lu,et al.  Glass-based integrated capacitive sensors for detection of the neurotransmitter dopamine , 2011 .

[25]  Joseph Wang Carbon‐Nanotube Based Electrochemical Biosensors: A Review , 2005 .

[26]  B. J. Venton,et al.  Review: Carbon nanotube based electrochemical sensors for biomolecules. , 2010, Analytica chimica acta.

[27]  M. Mas,et al.  Monitoring brain chemistry in vivo: voltammetric techniques, sensors, and behavioral applications. , 1998, Critical reviews in neurobiology.

[28]  Gordon G Wallace,et al.  Biocompatibility of immobilized aligned carbon nanotubes. , 2011, Small.

[29]  Mohsen Mollazadeh,et al.  Wireless Micropower Instrumentation for Multimodal Acquisition of Electrical and Chemical Neural Activity , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[30]  Arjang Hassibi,et al.  A CMOS Electrochemical Impedance Spectroscopy (EIS) Biosensor Array , 2010, IEEE Transactions on Biomedical Circuits and Systems.

[31]  Torsten Lehmann,et al.  Integrating data converters for picoampere currents from electrochemical transducers , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[32]  M.S.-C. Lu,et al.  CMOS Capacitive Sensors With Sub- $\mu$m Microelectrodes for Biosensing Applications , 2010, IEEE Sensors Journal.

[33]  Peijun Ji,et al.  Enzymes immobilized on carbon nanotubes. , 2011, Biotechnology advances.

[34]  D. Robertson,et al.  The Physical Chemistry of Brain and Neural Cell Membranes: An Overview , 2010, Neurochemical Research.

[35]  Manfred Lindau,et al.  Parallel recording of neurotransmitters release from chromaffin cells using a 10×10 CMOS IC potentiostat array with on-chip working electrodes. , 2013, Biosensors & bioelectronics.

[36]  M. Laruelle,et al.  Glutamate, dopamine, and schizophrenia: from pathophysiology to treatment. , 2003, Annals of the New York Academy of Sciences.

[37]  Hassan Hosseini Monfared,et al.  Electroless deposition of bis(4'-(4-Pyridyl)-2,2':6',2''-terpyridine)iron(II) thiocyanate complex onto carbon nanotubes modified glassy carbon electrode: application to simultaneous determination of ascorbic acid, dopamine and uric acid , 2011 .

[38]  Chao Yang,et al.  Amperometric Electrochemical Microsystem for a Miniaturized Protein Biosensor Array , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[39]  E. Vittoz,et al.  An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications , 1995 .

[40]  Yuehe Lin,et al.  Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. , 2003, Journal of the American Chemical Society.