Reconciling spatial and temporal soil moisture effects on afternoon rainfall

Soil moisture impacts on precipitation have been strongly debated. Recent observational evidence of afternoon rain falling preferentially over land parcels that are drier than the surrounding areas (negative spatial effect), contrasts with previous reports of a predominant positive temporal effect. However, whether spatial effects relating to soil moisture heterogeneity translate into similar temporal effects remains unknown. Here we show that afternoon precipitation events tend to occur during wet and heterogeneous soil moisture conditions, while being located over comparatively drier patches. Using remote-sensing data and a common analysis framework, spatial and temporal correlations with opposite signs are shown to coexist within the same region and data set. Positive temporal coupling might enhance precipitation persistence, while negative spatial coupling tends to regionally homogenize land surface conditions. Although the apparent positive temporal coupling does not necessarily imply a causal relationship, these results reconcile the notions of moisture recycling with local, spatially negative feedbacks.

[1]  Eric A. Smith,et al.  Convective–Stratiform Precipitation Variability at Seasonal Scale from 8 Yr of TRMM Observations: Implications for Multiple Modes of Diurnal Variability , 2008 .

[2]  B. Barkstrom,et al.  Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment , 1996 .

[3]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[4]  Florian Pappenberger,et al.  Comparison of different evaporation estimates over the African continent , 2013 .

[5]  Markus Reichstein,et al.  Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis , 2013 .

[6]  N. Loeb,et al.  Surface Irradiances Consistent With CERES-Derived Top-of-Atmosphere Shortwave and Longwave Irradiances , 2013 .

[7]  Yudong Tian,et al.  Systematic anomalies over inland water bodies in satellite‐based precipitation estimates , 2007 .

[8]  D. Lawrence,et al.  Regions of Strong Coupling Between Soil Moisture and Precipitation , 2004, Science.

[9]  C. Taylor,et al.  Afternoon rain more likely over drier soils , 2012, Nature.

[10]  F. Turk,et al.  Component analysis of errors in satellite-based precipitation estimates , 2009 .

[11]  R. Jeu,et al.  Multisensor historical climatology of satellite‐derived global land surface moisture , 2008 .

[12]  Taikan Oki,et al.  GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis , 2006, Journal of Hydrometeorology.

[13]  J. Susskind,et al.  Global Precipitation at One-Degree Daily Resolution from Multisatellite Observations , 2001 .

[14]  Lifeng Luo,et al.  Contribution of land surface initialization to subseasonal forecast skill: First results from a multi‐model experiment , 2010 .

[15]  Hubert H. G. Savenije,et al.  Length and time scales of atmospheric moisture recycling , 2010 .

[16]  C. Taylor,et al.  Modeling soil moisture‐precipitation feedback in the Sahel: Importance of spatial scale versus convective parameterization , 2013 .

[17]  T. Holmes,et al.  Global land-surface evaporation estimated from satellite-based observations , 2010 .

[18]  C. Russell,et al.  Escape of O+ through the distant tail plasma sheet , 2010 .

[19]  N. Verhoest,et al.  El Niño-La Niña cycle and recent trends in continental evaporation , 2014 .

[20]  Sunny Sun-Mack,et al.  Uncertainty Estimate of Surface Irradiances Computed with MODIS-, CALIPSO-, and CloudSat-Derived Cloud and Aerosol Properties , 2012, Surveys in Geophysics.

[21]  K. Findell Atmospheric Controls on Soil Moisture-Boundary Layer Interactions , 2001 .

[22]  R. Koster,et al.  Observational evidence that soil moisture variations affect precipitation , 2003 .

[23]  Yudong Tian,et al.  A global map of uncertainties in satellite‐based precipitation measurements , 2010 .

[24]  Pierre Gentine,et al.  Surface and atmospheric controls 1 on the onset of moist convection over land , 2013 .

[25]  A. Holtslag,et al.  Influence of Soil Moisture on Boundary Layer Cloud Development , 2004 .

[26]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[27]  Robert K. Kaufmann,et al.  Investigating soil moisture feedbacks on precipitation with tests of Granger causality , 2002 .

[28]  Patrick Minnis,et al.  Temporal Interpolation Methods for the Clouds and the Earth’s Radiant Energy System (CERES) Experiment , 1998 .

[29]  Yudong Tian,et al.  Evaluation of the High-Resolution CMORPH Satellite Rainfall Product Using Dense Rain Gauge Observations and Radar-Based Estimates , 2012 .

[30]  C. Priestley,et al.  On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .

[31]  Andrei P. Sokolov,et al.  Response of evapotranspiration and water availability to changing climate and land cover on the Mongolian Plateau during the 21st century , 2013 .

[32]  C. Bretherton,et al.  The Soil Moisture–Precipitation Feedback in Simulations with Explicit and Parameterized Convection , 2009 .

[33]  David M. Winker,et al.  Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties , 2011 .

[34]  William R. Walter,et al.  New signatures of underground nuclear tests revealed by satellite radar interferometry , 2003 .

[35]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[36]  P. Claps,et al.  An Analysis of the Soil Moisture Feedback on Convective and Stratiform Precipitation , 2008 .

[37]  Peter A. Troch,et al.  On bimodality in warm season soil moisture observations , 2005 .

[38]  S. Sorooshian,et al.  Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks , 1997 .

[39]  J. Janowiak,et al.  CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution , 2004 .

[40]  Eric F. Wood,et al.  A Global Intercomparison of Modeled and Observed Land–Atmosphere Coupling* , 2012 .

[41]  Pierre Gentine,et al.  Land-surface controls on afternoon precipitation diagnosed from observational data : uncertainties and confounding factors , 2014 .

[42]  S. Seneviratne,et al.  Investigating soil moisture-climate interactions in a changing climate: A review , 2010 .

[43]  Pierre Gentine,et al.  Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation , 2011 .

[44]  Kuolin Hsu,et al.  The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low- and mid-latitudes , 2007 .

[45]  Diego G. Miralles,et al.  Magnitude and variability of land evaporation and its components at the global scale , 2011 .

[46]  C. Taylor,et al.  Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns , 2011 .

[47]  Framework Development , 2018 .

[48]  S. Sorooshian,et al.  Evaluation of PERSIANN system satellite-based estimates of tropical rainfall , 2000 .