Tortuosity Anisotropy in Lithium‐Ion Battery Electrodes

M. Ebner, Prof. W. Vood Department of Information Technology and Electrical Engineering ETH Zurich , 8092 , Zurich , Switzerland E-mail: vwood@ethz.chD.-W. Chung, Prof. R. E. Garcia School of Materials Engineering Purdue University West Lafayette, IN , 47907 , USA .

[1]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[2]  D. Aurbach,et al.  The influence of geometry in 2D simulation on the charge/discharge processes in Li-ion batteries , 2012 .

[3]  D. Wheeler,et al.  FIB/SEM-based calculation of tortuosity in a porous LiCoO2 cathode for a Li-ion battery , 2013 .

[4]  Xiangyun Song,et al.  Calendering effects on the physical and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 cathode , 2012 .

[5]  Yoyo Hinuma,et al.  Lithium Diffusion in Graphitic Carbon , 2010, 1108.0576.

[6]  D. Stephenson,et al.  Direct Measurements of Effective Ionic Transport in Porous Li-Ion Electrodes , 2013 .

[7]  Yet-Ming Chiang,et al.  An Analytical Method to Determine Tortuosity in Rechargeable Battery Electrodes , 2012 .

[8]  Charles W. Monroe,et al.  Direct in situ measurements of Li transport in Li-ion battery negative electrodes , 2009 .

[9]  Peng Lu,et al.  Effects of Inhomogeneities—Nanoscale to Mesoscale—on the Durability of Li-Ion Batteries , 2013 .

[10]  M. Hess,et al.  Shrinking annuli mechanism and stage-dependent rate capability of thin-layer graphite electrodes for lithium-ion batteries , 2012 .

[11]  S. Trussler,et al.  A Guide to Li-Ion Coin-Cell Electrode Making for Academic Researchers , 2011 .

[12]  Xiangyun Song,et al.  A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes , 2012 .

[13]  Paul V. Braun,et al.  Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. , 2011, Nature nanotechnology.

[14]  Bruce Dunn,et al.  Three-dimensional battery architectures. , 2004, Chemical reviews.

[15]  F. Marone,et al.  X‐Ray Tomography of Porous, Transition Metal Oxide Based Lithium Ion Battery Electrodes , 2013 .

[16]  Michael Holzapfel,et al.  High Rate Capability of Graphite Negative Electrodes for Lithium-Ion Batteries , 2005 .

[17]  Ralph E. White,et al.  Comparison between Computer Simulations and Experimental Data for High-Rate Discharges of Plastic Lithium-Ion Batteries , 2000 .

[18]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[19]  Ann Marie Sastry,et al.  Porous cathode optimization for lithium cells: Ionic and electronic conductivity, capacity, and selection of materials , 2010 .

[20]  Martin Ebner,et al.  Validity of the Bruggeman relation for porous electrodes , 2013 .

[21]  K. Zaghib,et al.  Quantifying tortuosity in porous Li-ion battery materials , 2009 .

[22]  S. Torquato Random Heterogeneous Materials , 2002 .

[23]  Nigel P. Brandon,et al.  Local Tortuosity Inhomogeneities in a Lithium Battery Composite Electrode , 2011 .

[24]  Yet-Ming Chiang,et al.  Design of Battery Electrodes with Dual‐Scale Porosity to Minimize Tortuosity and Maximize Performance , 2013, Advanced materials.

[25]  Shen J. Dillon,et al.  Microstructural design considerations for Li-ion battery systems , 2012 .