Converting DN value to reflectance directly by relative radiometric normalization

An automatic algorithm for relative radiometric normalization is presented. It directly normalizes the digital numbers (DN) of images band-by-band to surface reflectance. A united linear relationship from DN of target images to surface reflectance of reference images is derived and the applicable conditions are given. The iteratively re-weighted multivariate alteration detection (IR-MAD) transformation is used to select pseudo-invariant features (PIFs) automatically. The procedure is simple, fast and completely automatic. The algorithm is applied to normalize two Landsat TM images, and the result is satisfactory in both accuracy and consistency.

[1]  William J. Volchok,et al.  Radiometric scene normalization using pseudoinvariant features , 1988 .

[2]  Knut Conradsen,et al.  Multivariate Alteration Detection (MAD) and MAF Postprocessing in Multispectral, Bitemporal Image Data: New Approaches to Change Detection Studies , 1998 .

[3]  J. Townshend,et al.  An operational atmospheric correction algorithm for Landsat Thematic Mapper imagery over the land , 1997 .

[4]  J. Cihlar,et al.  Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection , 2002 .

[5]  Hongliang Fang,et al.  Atmospheric correction of Landsat ETM+ land surface imagery. I. Methods , 2001, IEEE Trans. Geosci. Remote. Sens..

[6]  S. Liang Quantitative Remote Sensing of Land Surfaces , 2003 .

[7]  Anthony J. Ratkowski,et al.  Validation of the QUick atmospheric correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery , 2005 .

[8]  Hongliang Fang,et al.  Atmospheric correction of Landsat ETM+ land surface imagery: Part I: Methods , 2001 .

[9]  C. Woodcock,et al.  Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects? , 2001 .

[10]  Xiaojun Yang,et al.  Relative Radiometric Normalization Performance for Change Detection from Multi-Date Satellite Images , 2000 .

[11]  M. Canty,et al.  Automatic radiometric normalization of multitemporal satellite imagery , 2004 .

[12]  Gail P. Anderson,et al.  Atmospheric correction of spectral imagery: evaluation of the FLAASH algorithm with AVIRIS data , 2002, Applied Imagery Pattern Recognition Workshop, 2002. Proceedings..

[13]  Christopher D. Elvidge,et al.  Comparison of relative radiometric normalization techniques , 1996 .