Behavior of Jatropha curcas L. seeds under osmotic stress: germination and cell cycle activity

Jatropha curcas is an oil-rich Euphorbiaceae seed species renowned for its apparent tolerance to environmental stresses. It is considered a promising source of renewable feedstock for biodiesel production in the Brazilian semiarid region where crop establishment requires a better understanding of the mechanisms leading to proper seed and plant behavior under water restrictive conditions. This study describes physiological and cytological profiles of J. curcas seeds imbibed in water restriction conditions by means of osmotic stress or osmoconditioning. Seeds were characterized by size, weight, moisture content and dry mass, germinability, and cell cycle activation by means of tubulin and microtubule cytoskeleton accumulation. Osmoconditioning at -0.8 MPa did not induce priming effects as it did not improve the physiological quality of the seed lots. Western blotting and immunocytochemical analysis revealed an increasing accumulation of tubulin and microtubule cytoskeleton in seeds imbibed in water for 48h onwards, culminating in the onset of mitotic configurations after germination. Only cortical microtubules were observed during seed osmoconditioning, whereas mitotic microtubules only occurred after re-imbibition of osmoconditioned seeds in water and subsequent germination.

[1]  Song-Quan Song,et al.  Change in desiccation tolerance of maize embryos during development and germination at different water potential PEG-6000 in relation to oxidative process. , 2013, Plant physiology and biochemistry : PPB.

[2]  O. Resende,et al.  Determination of the volumetric shrinkage in jatropha seeds during drying , 2011 .

[3]  J. Lopes,et al.  Germinação e desenvolvimento de plântulas de pinhão manso sob condições de estresse hídrico simulado , 2011 .

[4]  R. Arora,et al.  Osmopriming of spinach (Spinacia oleracea L. cv. Bloomsdale) seeds and germination performance under temperature and water stress. , 2010 .

[5]  M. Dadlani,et al.  The subcellular basis of seed priming. , 2010 .

[6]  Hui Liu,et al.  A comparative analysis of embryo and endosperm proteome from seeds of Jatropha curcas. , 2009, Journal of integrative plant biology.

[7]  R. Ellis,et al.  Priming and re-drying improve the survival of mature seeds of Digitalis purpurea during storage. , 2009, Annals of botany.

[8]  E. Borges,et al.  Evaluation of the physiological quality of anadenenthera peregrina (L.) Speg. seeds during storage , 2009 .

[9]  Michelle Cristina Ajala,et al.  Morfometria de sementes de Jatropha curcas L. em função da procedência , 2009 .

[10]  C. A. Costa,et al.  QUANTIDADE DE ÁGUA DO SUBSTRATO NA GERMINAÇÃO E VIGOR DE SEMENTES DE PINHÃO-MANSO , 2008 .

[11]  P. Toorop,et al.  ABA inhibits embryo cell expansion and early cell division events during coffee (Coffea arabica 'Rubi') seed germination. , 2008, Annals of botany.

[12]  J. A. Peters,et al.  Diferentes tipos de vedações dos frascos e concentrações de sacarose na micropropagação de Thymus vulgaris L. , 2008 .

[13]  L. S. Severino,et al.  TEOR DE ÁGUA LIMITE PARA CRIOCONSERVAÇÃO DAS SEMENTES DE PINHÃO MANSO (Jatropha curcas L.) , 2008 .

[14]  M. Yuan,et al.  Salt tolerance requires cortical microtubule reorganization in Arabidopsis. , 2007, Plant & cell physiology.

[15]  R. Jongschaap,et al.  Claims and facts on Jatropha curcas L. : global Jatropha curcas evaluation. breeding and propagation programme , 2007 .

[16]  H. Ginwal,et al.  Seed Source Variation in Morphology, Germination and Seedling Growth of Jatropha curcas Linn. in Central India , 2005 .

[17]  Douglas J. H. Olson,et al.  Proteome analysis of embryo and endosperm from germinating tomato seeds , 2005, Proteomics.

[18]  H. Hilhorst,et al.  Changes in DNA and microtubules during loss and re-establishment of desiccation tolerance in germinating Medicago truncatula seeds. , 2005, Journal of experimental botany.

[19]  I. C. Machado,et al.  Biologia reprodutiva de duas espécies de Jatropha L. (Euphorbiaceae) em caatinga, Nordeste do Brasil , 2005 .

[20]  R. Bino,et al.  Cell Cycle Activity and β-Tubulin Accumulation During Dormancy Breaking of Acer platanoides L. seeds , 2004, Biologia Plantarum.

[21]  C. H. Busby,et al.  Improvements in immunostaining samples embedded in methacrylate: localization of microtubules and other antigens throughout developing organs in plants of diverse taxa , 1992, Planta.

[22]  D. Inzé,et al.  The Role of the Cell Cycle Machinery in Resumption of Postembryonic Development , 2004 .

[23]  K. Openshaw A review of Jatropha curcas: an oil plant of unfulfilled promise☆ , 2000 .

[24]  R. Bino,et al.  Cell division and subsequent radicle protrusion in tomato seeds are inhibited by osmotic stress but DNA synthesis and formation of microtubular cytoskeleton are not. , 2000, Plant physiology.

[25]  Múcio Silva Reis,et al.  Avaliação da qualidade fisiológica de sementes de soja, após o processo de hidratação-desidratação e envelhecimento acelerado , 1999 .

[26]  H. Hirt,et al.  Vicia faba germination: Synchronized cell growth and localization of nucleolin and α-tubulin. , 1999, Seed Science Research.

[27]  H. Hilhorst,et al.  DETECTION OF fl-TUBULIN IN TOMATO SEEDS: OPTIMIZATION OF EXTRACTION AND IMMUNODETECTION , 1998 .

[28]  M. Iwanaga A protocol to determine seed storage behaviour , 1998 .

[29]  K. Bradford Manipulation of Seed Water Relations Via Osmotic Priming to Improve Germination Under Stress Conditions , 1986, HortScience.

[30]  K. Thompson,et al.  Seeds: Physiology of Development and Germination , 1986 .