Boosting MUS Extraction

If a CSP instance has no solution, it contains a smaller unsolvable subproblem that makes unsolvable the whole problem. When solving such instance, instead of just returning the "no solution" message, it is of interest to return an unsolvable subproblem. The detection of such unsolvable subproblems has many applications: failure explanation, error diagnosis, planning, intelligent backtracking, etc. In this paper, we give a method for extracting a Minimal Unsolvable Subproblem (MUS) from a CSP based on a Forward Checking algorithm with Dynamic Variable Ordering (FC-DVO). We propose an approach that improves existing techniques using a two steps algorithm. In the first step, we detect an unsolvable subproblem selecting a set of constraints, while in the second step we refine this unsolvable subproblem until a MUS is obtained. We provide experimental results that show how our approach improves other approaches based on MAC-DVO algorithms.

[1]  Renato Bruni,et al.  Approximating minimal unsatisfiable subformulae by means of adaptive core search , 2003, Discret. Appl. Math..

[2]  Karem A. Sakallah,et al.  On Finding All Minimally Unsatisfiable Subformulas , 2005, SAT.

[3]  P. Herrmann ON REDUCIBILITY AMONG COMBINATORIAL PROBLEMS , 1973 .

[4]  Francesca Rossi,et al.  Principles and Practice of Constraint Programming — CP '95 , 1995, Lecture Notes in Computer Science.

[5]  Robert M. Haralick,et al.  Increasing Tree Search Efficiency for Constraint Satisfaction Problems , 1979, Artif. Intell..

[6]  Makoto Yokoo,et al.  Asynchronous Weak-commitment Search for Solving Distributed Constraint Satisfaction Problems , 1995, CP.

[7]  Boi Faltings,et al.  Java Constraint Library: bringing constraints technology on the Internet using the Java language , 1997, AAAI 1997.

[8]  Thomas Schiex,et al.  Russian Doll Search for Solving Constraint Optimization Problems , 1996, AAAI/IAAI, Vol. 1.

[9]  Boi Faltings,et al.  Open constraint programming , 2005, Artif. Intell..

[10]  Lakhdar Sais,et al.  Extracting MUCs from Constraint Networks , 2006, ECAI.

[11]  Martha E. Pollack,et al.  Identifying Conflicts in Overconstrained Temporal Problems , 2005, IJCAI.

[12]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[13]  Patrick Prosser,et al.  HYBRID ALGORITHMS FOR THE CONSTRAINT SATISFACTION PROBLEM , 1993, Comput. Intell..

[14]  Igor L. Markov,et al.  AMUSE: a minimally-unsatisfiable subformula extractor , 2004, Proceedings. 41st Design Automation Conference, 2004..

[15]  Jinbo Huang,et al.  MUP: a minimal unsatisfiability prover , 2005, ASP-DAC.

[16]  Matthew L. Ginsberg,et al.  Dynamic Backtracking , 1993, J. Artif. Intell. Res..

[17]  Sharad Malik,et al.  Extracting small unsatis able cores from unsatis able boolean formulas , 2003 .

[18]  Karem A. Sakallah,et al.  From Max-SAT to Min-UNSAT : Insights and Applications , 2005 .

[19]  James Bailey,et al.  Discovery of Minimal Unsatisfiable Subsets of Constraints Using Hitting Set Dualization , 2005, PADL.

[20]  Eugene C. Freuder,et al.  Extracting Constraint Satisfaction Subproblems , 1995, IJCAI.

[21]  Antonio Sassano,et al.  Restoring Satisfiability or Maintaining Unsatisfiability by finding small Unsatisfiable Subformulae , 2001, Electron. Notes Discret. Math..

[22]  Ulrich Junker Conflict Detection for Arbitrary Constraint Propagation Algorithms , 2001 .