Power flow through machine isolators to resonant and non-resonant beams

Abstract The parameters controlling power transmission from a vibrating machine to the seating structure, via spring-like vibration isolators, are investigated. The low frequency range is considered where the machine moves as a rigid body. It is shown that the finite seating structure can be modelled by an equivalent structure of infinite extent for frequency averaged power transmission calculations. Power transmission to a finite and an infinite beam via a mass and spring in series is measured experimentally and compared with theoretical predictions. The power transmission is measured by two proposed methods; the first involves the real component of the seating impedance, and the second the transfer impedance of the isolator.