Object scale selection of hierarchical image segmentation with deep seeds

[1]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Jordi Pont-Tuset,et al.  Convolutional Oriented Boundaries: From Image Segmentation to High-Level Tasks , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Suk-Ju Kang,et al.  Human perception-based image segmentation using optimising of colour quantisation , 2014, IET Image Process..

[4]  Xuelong Li,et al.  Saliency Detection by Multiple-Instance Learning , 2013, IEEE Transactions on Cybernetics.

[5]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[6]  Frank Y. Shih,et al.  Automatic seeded region growing for color image segmentation , 2005, Image Vis. Comput..

[7]  Ting Liu,et al.  Image Segmentation Using Hierarchical Merge Tree , 2015, IEEE Transactions on Image Processing.

[8]  Antonio Criminisi,et al.  TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-class Object Recognition and Segmentation , 2006, ECCV.

[9]  Jiayao Wang,et al.  Weakly-Supervised Image Semantic Segmentation Based on Superpixel Region Merging , 2019, Big Data Cogn. Comput..

[10]  Sridhar Lakshmanan,et al.  Simulation-based model for surrogate safety measures analysis in automated vehicle-pedestrian conflict on an urban environment , 2020 .

[11]  Xiao Qin,et al.  Image segmentation based on modified superpixel segmentation and spectral clustering , 2018, The Journal of Engineering.

[12]  Dahun Kim,et al.  Two-Phase Learning for Weakly Supervised Object Localization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[13]  Jordi Pont-Tuset,et al.  Supervised Evaluation of Image Segmentation and Object Proposal Techniques , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Nanning Zheng,et al.  Salient Object Detection: A Discriminative Regional Feature Integration Approach , 2013, International Journal of Computer Vision.

[15]  Huchuan Lu,et al.  Joint Learning of Saliency Detection and Weakly Supervised Semantic Segmentation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[16]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[17]  Edward H. Adelson,et al.  Crisp Boundary Detection Using Pointwise Mutual Information , 2014, ECCV.

[18]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[19]  Qiaoliang Li,et al.  Supervised image segmentation based on superpixel and improved normalised cuts , 2019, IET Image Process..

[20]  Bernd Hamann,et al.  Region Growing for Segmenting Green Microalgae Images , 2018, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[21]  Marco Loog,et al.  Scale selection for supervised image segmentation , 2012, Image Vis. Comput..

[22]  Jing Li,et al.  An adaptive-scale active contour model for inhomogeneous image segmentation and bias field estimation , 2018, Pattern Recognit..

[23]  Jonathan T. Barron,et al.  Multiscale Combinatorial Grouping for Image Segmentation and Object Proposal Generation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[25]  Xiaojuan Qi,et al.  Augmented Feedback in Semantic Segmentation Under Image Level Supervision , 2016, ECCV.

[26]  Charless C. Fowlkes,et al.  Contour Detection and Hierarchical Image Segmentation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Subhransu Maji,et al.  Semantic contours from inverse detectors , 2011, 2011 International Conference on Computer Vision.

[28]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[29]  Yao Zhao,et al.  Object Region Mining with Adversarial Erasing: A Simple Classification to Semantic Segmentation Approach , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Huimin Ma,et al.  Weakly-Supervised Semantic Segmentation by Iteratively Mining Common Object Features , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[31]  Bolei Zhou,et al.  Learning Deep Features for Discriminative Localization , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Chao Gao,et al.  BASNet: Boundary-Aware Salient Object Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Wenyu Liu,et al.  Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[34]  Jia-Hao Syu,et al.  Hierarchical Image Segmentation Based on Iterative Contraction and Merging , 2017, IEEE Transactions on Image Processing.

[35]  Wenbing Tao,et al.  Iterative image segmentation with feature driven heuristic four-color labeling , 2018, Pattern Recognit..

[36]  Lars Petersson,et al.  Built-in Foreground/Background Prior for Weakly-Supervised Semantic Segmentation , 2016, ECCV.

[37]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[38]  Gregory Shakhnarovich,et al.  Image Segmentation by Cascaded Region Agglomeration , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Seong Joon Oh,et al.  Exploiting Saliency for Object Segmentation from Image Level Labels , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  Lin He,et al.  Hierarchical Segmentation Evaluation of Region-Based Image Hierarchy , 2019, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[41]  Hesham Alghodhaifi,et al.  Predicting Invasive Ductal Carcinoma in breast histology images using Convolutional Neural Network , 2019, 2019 IEEE National Aerospace and Electronics Conference (NAECON).

[42]  Xuelong Li,et al.  Weakly Supervised Adversarial Domain Adaptation for Semantic Segmentation in Urban Scenes , 2019, IEEE Transactions on Image Processing.

[43]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Sinisa Todorovic,et al.  Combining Bottom-Up, Top-Down, and Smoothness Cues for Weakly Supervised Image Segmentation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[45]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[46]  Luc Van Gool,et al.  Scale-Aware Alignment of Hierarchical Image Segmentation , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Yunchao Wei,et al.  STC: A Simple to Complex Framework for Weakly-Supervised Semantic Segmentation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Xinying Xu,et al.  Automatic Image Segmentation With Superpixels and Image-Level Labels , 2019, IEEE Access.

[49]  Jitendra Malik,et al.  Learning a classification model for segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[50]  Xinying Xu,et al.  Weakly Supervised Deep Semantic Segmentation Using CNN and ELM with Semantic Candidate Regions , 2019, Complex..

[51]  Christoph H. Lampert,et al.  Seed, Expand and Constrain: Three Principles for Weakly-Supervised Image Segmentation , 2016, ECCV.

[52]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.