Estimating Land Surface Temperature from Landsat-8 Data using the NOAA JPSS Enterprise Algorithm

Land surface temperature (LST) is one of the key parameters in hydrology, meteorology, and the surface energy balance. The National Oceanic and Atmospheric Administration (NOAA) Joint Polar Satellite System (JPSS) Enterprise algorithm is adapted to Landsat-8 data to obtain the estimate of LST. The coefficients of the Enterprise algorithm were obtained by linear regression using the analog data produced by comprehensive radiative transfer modeling. The performance of the Enterprise algorithm was first tested by simulation data and then validated by ground measurements. In addition, the accuracy of the Enterprise algorithm was compared to the generalized split-window algorithm and the split-window algorithm of Sobrino et al. (1996). The validation results indicate the Enterprise algorithm has a comparable accuracy to the other two split-window algorithms. The biases (root mean square errors) of the Enterprise algorithm were 1.38 (3.22), 1.01 (2.32), 1.99 (3.49), 2.53 (3.46), and −0.15 K (1.11 K) at the SURFRAD, HiWATER_A, HiWATER_B, HiWATER_C sites and BanGe site, respectively, whereas those values were 1.39 (3.20), 1.0 (2.30), 1.93 (3.48), 2.53 (3.35), and −0.35 K (1.16 K) for the generalized split-window algorithm, 1.45 (3.39), 1.08 (2.41), 2.16 (3.67), 2.52 (3.58), and 0.02 K (1.12 K) for the split-window algorithm of Sobrino, respectively. This study provides an alternative method to estimate LST from Landsat-8 data.

[1]  A. Karnieli,et al.  Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA-advanced very high resolution radiometer data , 2001 .

[2]  J. Sobrino,et al.  A generalized single‐channel method for retrieving land surface temperature from remote sensing data , 2003 .

[3]  T. Carlson,et al.  On the relation between NDVI, fractional vegetation cover, and leaf area index , 1997 .

[4]  Salvador Sánchez-Colón,et al.  Assessment of seasonal forest fire risk using NOAA-AVHRR: a case study in central Mexico , 2009 .

[5]  C. Long,et al.  SURFRAD—A National Surface Radiation Budget Network for Atmospheric Research , 2000 .

[6]  Qiang Liu,et al.  Estimating the Hemispherical Broadband Longwave Emissivity of Global Vegetated Surfaces Using a Radiative Transfer Model , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[7]  José A. Sobrino,et al.  Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data , 1996 .

[8]  Simon J. Hook,et al.  Validation of Land Surface Temperature products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) using ground-based and heritage satellite measurements , 2014 .

[9]  Yao Liu,et al.  Land Surface Temperature Estimate From Chinese Gaofen-5 Satellite Data Using Split-Window Algorithm , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[10]  D. Lu,et al.  Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies , 2004 .

[11]  V. Caselles,et al.  Mapping land surface emissivity from NDVI: Application to European, African, and South American areas , 1996 .

[12]  Wim G.M. Bastiaanssen,et al.  Linear relationships between surface reflectance and temperature and their application to map actual evaporation of groundwater , 1989 .

[13]  Huazhong Ren,et al.  Algorithm Development for Land Surface Temperature Retrieval: Application to Chinese Gaofen-5 Data , 2017, Remote. Sens..

[14]  Juan C. Jiménez-Muñoz,et al.  An Improved Single-Channel Method to Retrieve Land Surface Temperature from the Landsat-8 Thermal Band , 2018, Remote. Sens..

[15]  Eva Rubio,et al.  Thermal band selection for the PRISM instrument: 3. Optimal band configurations , 1998 .

[16]  William C. Snyder,et al.  Thermal Infrared (3–14 μm) bidirectional reflectance measurements of sands and soils , 1997 .

[17]  Jie Cheng,et al.  Estimating Land Surface Temperature from Feng Yun-3C/MERSI Data Using a New Land Surface Emissivity Scheme , 2017, Remote. Sens..

[18]  Joseph J. Michalsky,et al.  An Update on SURFRAD—The GCOS Surface Radiation Budget Network for the Continental United States , 2005 .

[19]  David P. Roy,et al.  The global Landsat archive: Status, consolidation, and direction , 2016 .

[20]  Offer Rozenstein,et al.  Derivation of Land Surface Temperature for Landsat-8 TIRS Using a Split Window Algorithm , 2014, Sensors.

[21]  Zhaoming Zhang,et al.  Validation of the generalized single-channel algorithm using Landsat 8 imagery and SURFRAD ground measurements , 2016 .

[22]  Geng-Ming Jiang,et al.  Land Surface Temperature Retrieval From Landsat-8 Data With the Generalized Split-Window Algorithm , 2018, IEEE Access.

[23]  Zhou Mei,et al.  Using MODIS land surface temperature to evaluate forest fire risk of northeast China , 2004 .

[24]  Abdolreza Safari,et al.  A new approach for land surface emissivity estimation using LDCM data in semi-arid areas: exploitation of the ASTER spectral library data set , 2016 .

[25]  José A. Sobrino,et al.  Satellite-derived land surface temperature: Current status and perspectives , 2013 .

[26]  Xiaotong Zhang,et al.  Estimating the Optimal Broadband Emissivity Spectral Range for Calculating Surface Longwave Net Radiation , 2013, IEEE Geoscience and Remote Sensing Letters.

[27]  Julia A. Barsi,et al.  The next Landsat satellite: The Landsat Data Continuity Mission , 2012 .

[28]  Jindi Wang,et al.  A Stepwise Refining Algorithm of Temperature and Emissivity Separation for Hyperspectral Thermal Infrared Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[29]  J. El-Kharraz,et al.  Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax site , 2004 .

[30]  Nektarios Chrysoulakis,et al.  Online Global Land Surface Temperature Estimation from Landsat , 2017, Remote. Sens..

[31]  Drazen Skokovic,et al.  Permanent Stations for Calibration/Validation of Thermal Sensors over Spain , 2016, Data.

[32]  Juan C. Jiménez-Muñoz,et al.  Land surface temperature retrieval from thermal infrared data: An assessment in the context of the Surface Processes and Ecosystem Changes Through Response Analysis (SPECTRA) mission , 2005 .

[33]  Yongming Du,et al.  Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China , 2014 .

[34]  Guangjian Yan,et al.  Atmospheric water vapor retrieval from Landsat 8 thermal infrared images , 2015 .

[35]  Ming Chen,et al.  Validation of GOES-R Satellite Land Surface Temperature Algorithm Using SURFRAD Ground Measurements and Statistical Estimates of Error Properties , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Bo-Hui Tang,et al.  An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation , 2010 .

[37]  Zhaoming Zhang,et al.  An enhanced single‐channel algorithm for retrieving land surface temperature from Landsat series data , 2016 .

[38]  Shaohua Zhao,et al.  A Practical Split-Window Algorithm for Estimating Land Surface Temperature from Landsat 8 Data , 2015, Remote. Sens..

[39]  Qing Xiao,et al.  Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design , 2013 .

[40]  A. Chedin,et al.  The Improved Initialization Inversion Method: A High Resolution Physical Method for Temperature Retrievals from Satellites of the TIROS-N Series. , 1985 .

[41]  John R. Schott,et al.  Development of an Operational Calibration Methodology for the Landsat Thermal Data Archive and Initial Testing of the Atmospheric Compensation Component of a Land Surface Temperature (LST) Product from the Archive , 2014, Remote. Sens..

[42]  Carsten Brockmann,et al.  Synergistic use of MERIS and AATSR as a proxy for estimating Land Surface Temperature from Sentinel-3 data , 2016 .

[43]  S. Hook,et al.  The ASTER spectral library version 2.0 , 2009 .

[44]  Matthew Montanaro,et al.  Derivation and Validation of the Stray Light Correction Algorithm for the Thermal Infrared Sensor Onboard Landsat 8 , 2017 .

[45]  Hua Li,et al.  Evaluation of Land Surface Temperature Retrieval from FY-3B/VIRR Data in an Arid Area of Northwestern China , 2015, Remote. Sens..

[46]  Juan C. Jiménez-Muñoz,et al.  Split-Window Coefficients for Land Surface Temperature Retrieval From Low-Resolution Thermal Infrared Sensors , 2008, IEEE Geoscience and Remote Sensing Letters.

[47]  Juan C. Jiménez-Muñoz,et al.  Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data , 2014, IEEE Geoscience and Remote Sensing Letters.

[48]  Matthew Montanaro,et al.  Stray Light Artifacts in Imagery from the Landsat 8 Thermal Infrared Sensor , 2014, Remote. Sens..

[49]  Bo-Hui Tang,et al.  An improved NDVI-based threshold method for estimating land surface emissivity using MODIS satellite data , 2015 .

[50]  Jeff Dozier,et al.  A generalized split-window algorithm for retrieving land-surface temperature from space , 1996, IEEE Trans. Geosci. Remote. Sens..

[51]  Vicente García-Santos,et al.  Comparison of Three Methods for Estimating Land Surface Temperature from Landsat 8-TIRS Sensor Data , 2018, Remote. Sens..

[52]  Shunlin Liang,et al.  Is There a Physical Linkage Between Surface Emissive and Reflective Variables Over Non-Vegetated Surfaces? , 2018, Journal of the Indian Society of Remote Sensing.

[53]  Xiaolei Yu,et al.  Land Surface Temperature Retrieval from Landsat 8 TIRS - Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method , 2014, Remote. Sens..

[54]  Wusheng Hu,et al.  A Temperature and Emissivity Separation Algorithm for Landsat-8 Thermal Infrared Sensor Data , 2015, Remote. Sens..

[55]  Manfred Owe,et al.  On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces , 1993 .

[56]  Juan C. Jiménez-Muñoz,et al.  A Single-Channel Algorithm for Land-Surface Temperature Retrieval From ASTER Data , 2010, IEEE Geoscience and Remote Sensing Letters.

[57]  Jiemin Wang,et al.  Intercomparison of surface energy flux measurement systems used during the HiWATER‐MUSOEXE , 2013 .

[58]  Liu Qiang,et al.  Correlation-based temperature and emissivity separation algorithm , 2008 .

[59]  Fei Wang,et al.  An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data , 2015, Remote. Sens..

[60]  Bo-Hui Tang,et al.  Land-surface temperature retrieval from Landsat 8 single-channel thermal infrared data in combination with NCEP reanalysis data and ASTER GED product , 2019 .

[61]  José A. Sobrino,et al.  Global Atmospheric Profiles from Reanalysis Information (GAPRI): a new database for earth surface temperature retrieval , 2015 .

[62]  Simon J. Hook,et al.  Land Surface Temperature Product Validation Best Practice Protocol Version 1.0 - October, 2017 , 2017 .

[63]  Enric Valor,et al.  An Atmospheric Radiosounding Database for Generating Land Surface Temperature Algorithms , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[64]  Wei Wan,et al.  The Third Atmospheric Scientific Experiment for Understanding the Earth–Atmosphere Coupled System over the Tibetan Plateau and Its Effects , 2017 .

[65]  John R. Schott,et al.  Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration , 2014, Remote. Sens..