A Posteriori Error Estimation for DEIM Reduced Nonlinear Dynamical Systems

In this work an efficient approach for a posteriori error estimation for POD-DEIM reduced nonlinear dynamical systems is introduced. The considered nonlinear systems may also include time- and parameter-affine linear terms as well as parametrically dependent inputs and outputs. The reduction process involves a Galerkin projection of the full system and approximation of the system's nonlinearity by the DEIM method [S. Chaturantabut and D. C. Sorensen, SIAM J. Sci. Comput., 32 (2010), pp. 2737--2764]. The proposed a posteriori error estimator can be efficiently decomposed in an offline/online fashion and is obtained by a one-dimensional auxiliary ODE during reduced simulations. Key elements for efficient online computation are partial similarity transformations and matrix-DEIM approximations of the nonlinearity Jacobians. The theoretical results are illustrated by application to an unsteady Burgers equation and a cell apoptosis model.

[1]  Jacob K. White,et al.  A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[2]  Danny C. Sorensen,et al.  A State Space Error Estimate for POD-DEIM Nonlinear Model Reduction , 2012, SIAM J. Numer. Anal..

[3]  Timo Reis,et al.  Model reduction with a-priori error bounds for a class of nonlinear electrical circuits , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[4]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[5]  Bernard Haasdonk,et al.  Convergence Rates of the POD–Greedy Method , 2013 .

[6]  M. Grepl Reduced-basis approximation a posteriori error estimation for parabolic partial differential equations , 2005 .

[7]  Bernard Haasdonk,et al.  Reduced Basis Approximation for Nonlinear Parametrized Evolution Equations based on Empirical Operator Interpolation , 2012, SIAM J. Sci. Comput..

[8]  Bernard Haasdonk,et al.  Efficient a-posteriori error estimation for nonlinear kernel-based reduced systems , 2012, Syst. Control. Lett..

[9]  G. Söderlind,et al.  The logarithmic norm. History and modern theory , 2006 .

[10]  Bernard Haasdonk,et al.  A-Posteriori Error Estimation for Parameterized Kernel-Based Systems , 2012 .

[11]  Peter Benner,et al.  Krylov-Subspace Based Model Reduction of Nonlinear Circuit Models Using Bilinear and Quadratic-Linear Approximations , 2012 .

[12]  B. Haasdonk,et al.  REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATIONS OF PARAMETRIZED LINEAR EVOLUTION EQUATIONS , 2008 .

[13]  Marcus Meyer,et al.  Efficient model reduction in non-linear dynamics using the Karhunen-Loève expansion and dual-weighted-residual methods , 2003 .

[14]  J. Phillips,et al.  Analog Macromodeling using Kernel Methods , 2003, ICCAD 2003.

[15]  D. Wirtz Model reduction for nonlinear systems : kernel methods and error estimation (Modellreduktion für nichtlineare Systeme : Kernmethoden und Fehlerschätzung) , 2014 .

[16]  Paul T. Boggs,et al.  Efficient structure-preserving model reduction for nonlinear mechanical systems with application to structural dynamics. , 2012 .

[17]  Stefan Volkwein,et al.  Proper orthogonal decomposition for optimality systems , 2008 .

[18]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[19]  G. Dahlquist Stability and error bounds in the numerical integration of ordinary differential equations , 1961 .

[20]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[21]  Benjamin Stamm,et al.  Parameter multi‐domain ‘hp’ empirical interpolation , 2012 .

[22]  Martin A. Grepl,et al.  Certified Reduced Basis Methods for Nonaffine Linear Time–Varying Partial Differential Equations , 2011 .

[23]  Anthony T. Patera,et al.  A Posteriori Error Bounds for the Empirical Interpolation Method , 2010 .

[24]  M. Hinze,et al.  Proper Orthogonal Decomposition Surrogate Models for Nonlinear Dynamical Systems: Error Estimates and Suboptimal Control , 2005 .

[25]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[26]  B. Haasdonk,et al.  Efficient reduced models and a posteriori error estimation for parametrized dynamical systems by offline/online decomposition , 2011 .

[27]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[28]  S. R. Searle,et al.  On Deriving the Inverse of a Sum of Matrices , 1981 .

[29]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[30]  S. Volkwein,et al.  MODEL REDUCTION USING PROPER ORTHOGONAL DECOMPOSITION , 2008 .

[31]  Martin A. Grepl,et al.  CERTIFIED REDUCED BASIS METHODS FOR NONAFFINE LINEAR TIME-VARYING AND NONLINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS , 2012 .

[32]  Jacob K. White,et al.  A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices , 2001, ICCAD 2001.

[33]  N. Nguyen,et al.  EFFICIENT REDUCED-BASIS TREATMENT OF NONAFFINE AND NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS , 2007 .

[34]  Bernhard Wieland,et al.  Reduced basis methods for partial differential equations with stochastic influences , 2013 .