Population Mobility Dynamics Estimated from Mobile Telephony Data

Abstract In the last decade, mobile phones and mobile devices using mobile cellular telecommunication network connections have become ubiquitous. In several developed countries, the penetration of such devices has surpassed 100 percent. They facilitate communication and access to large quantities of data without the requirement of a fixed location or connection. Assuming mobile phones usually are in close proximity with the user, their cellular activities and locations are indicative of the user's activities and movements. As such, those cellular devices may be considered as a large scale distributed human activity sensing platform. This paper uses mobile operator telephony data to visualize the regional flows of people across the Republic of Ireland. In addition, the use of modified Markov chains for the ranking of significant regions of interest to mobile subscribers is investigated. Methodology is then presented which demonstrates how the ranking of significant regions of interest may be used to estimate national population, results of which are found to have strong correlation with census data.

[1]  Etienne Huens,et al.  Geographical dispersal of mobile communication networks , 2008, 0802.2178.

[2]  R. Shibasaki,et al.  An Implementation of Mobile Sensing for Large-Scale Urban Monitoring , 2008 .

[3]  Simon Urbanek,et al.  Exploring the Use of Urban Greenspace through Cellular Network Activity , 2012 .

[4]  Francisco G. Benitez,et al.  Review of traffic data estimations extracted from cellular networks , 2008 .

[5]  Juyong Park,et al.  The eigenmode analysis of human motion , 2010, 1603.04810.

[6]  Margaret Martonosi,et al.  Identifying Important Places in People's Lives from Cellular Network Data , 2011, Pervasive.

[7]  Carlo Ratti,et al.  Mobile Landscapes: Graz in Real Time , 2007, Location Based Services and TeleCartography.

[8]  Rein Ahas,et al.  Evaluating passive mobile positioning data for tourism surveys: An Estonian case study , 2008 .

[9]  Franziska Hoffmann,et al.  Spatial Tessellations Concepts And Applications Of Voronoi Diagrams , 2016 .

[10]  O. Järv,et al.  Understanding monthly variability in human activity spaces: A twelve-month study using mobile phone call detail records , 2014 .

[11]  Ronan Farrell,et al.  Analysing Ireland's Social and Transport Networks using Sparse Cellular Network Data , 2011 .

[12]  S. Strogatz,et al.  Redrawing the Map of Great Britain from a Network of Human Interactions , 2010, PloS one.

[13]  Stefan Rommer,et al.  SAE and the Evolved Packet Core: Driving the Mobile Broadband Revolution , 2009 .

[14]  R. Walgate Tale of two cities , 1984, Nature.

[15]  A-L Barabási,et al.  Structure and tie strengths in mobile communication networks , 2006, Proceedings of the National Academy of Sciences.

[16]  Chaoming Song,et al.  Modelling the scaling properties of human mobility , 2010, 1010.0436.

[17]  Beom Jun Kim,et al.  Scaling laws between population and facility densities , 2009, Proceedings of the National Academy of Sciences.

[18]  D. H. Mellor,et al.  Real time , 1981 .

[19]  Rein Ahas,et al.  Innovation in destination marketing , 2011 .

[20]  Oliver C. Ibe,et al.  Markov processes for stochastic modeling , 2008 .

[21]  Carlo Ratti,et al.  Cellular Census: Explorations in Urban Data Collection , 2007, IEEE Pervasive Computing.

[22]  R. Ahas,et al.  The Seasonal Variability of Population in Estonian Municipalities , 2010 .

[23]  Rein Ahas,et al.  Mobile Positioning Data in Tourism Studies and Monitoring: Case Study in Tartu, Estonia , 2007, ENTER.

[24]  Thomas Liebig,et al.  Visual Analytics for Understanding Spatial Situations from Episodic Movement Data , 2012, KI - Künstliche Intelligenz.

[25]  F. Calabrese,et al.  Urban gravity: a model for inter-city telecommunication flows , 2009, 0905.0692.

[26]  A. Barabasi,et al.  Analysis of a large-scale weighted network of one-toone human communication , 2007 .

[27]  Carlo Ratti,et al.  Eigenplaces: Analysing Cities Using the Space–Time Structure of the Mobile Phone Network , 2009 .

[28]  R. Ahas,et al.  Daily rhythms of suburban commuters' movements in the Tallinn metropolitan area: Case study with mobile positioning data , 2010 .

[29]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[30]  Ricardo Ocaña-Riola Non-homogeneous Markov processes for biomedical data analysis. , 2005, Biometrical journal. Biometrische Zeitschrift.

[31]  O. Järv,et al.  Using Mobile Positioning Data to Model Locations Meaningful to Users of Mobile Phones , 2010 .

[32]  David S. Ebert,et al.  Visualization and computer graphics , 2007 .

[33]  Peter Nijkamp,et al.  Mobile phone data from GSM networks for traffic parameter and urban spatial pattern assessment: a review of applications and opportunities , 2011, GeoJournal.

[34]  Gennady Andrienko,et al.  A General Framework for Using Aggregation in Visual Exploration of Movement Data , 2010 .

[35]  Carlo Ratti,et al.  Real-Time Urban Monitoring Using Cell Phones: A Case Study in Rome , 2011, IEEE Transactions on Intelligent Transportation Systems.

[36]  Bettina Speckmann,et al.  Flow Map Layout via Spiral Trees , 2011, IEEE Transactions on Visualization and Computer Graphics.

[37]  Gennady L. Andrienko,et al.  Spatial Generalization and Aggregation of Massive Movement Data , 2011, IEEE Transactions on Visualization and Computer Graphics.

[38]  Mari Ostendorf,et al.  From HMM's to segment models: a unified view of stochastic modeling for speech recognition , 1996, IEEE Trans. Speech Audio Process..

[39]  Ewa Niewiadomska-Szynkiewicz,et al.  Reconstruction of a social network graph from incomplete call detail records , 2011, 2011 International Conference on Computational Aspects of Social Networks (CASoN).

[40]  Luc Martens,et al.  Characterization and optimization of the power consumption in wireless access networks by taking daily traffic variations into account , 2012, EURASIP J. Wirel. Commun. Netw..

[41]  Geoff Rose,et al.  Mobile Phones as Traffic Probes: Practices, Prospects and Issues , 2006 .

[42]  A. Pozdnoukhov,et al.  Spatial structure and dynamics of urban communities , 2011 .

[43]  Natalia Adrienko,et al.  Spatial Generalization and Aggregation of Massive Movement Data , 2011 .

[44]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[45]  Carlo Ratti,et al.  Real time Rome , 2006 .

[46]  Ramón Cáceres,et al.  Clustering Anonymized Mobile Call Detail Records to Find Usage Groups , 2011 .

[47]  Albert-László Barabási,et al.  Limits of Predictability in Human Mobility , 2010, Science.

[48]  Marcos R. Vieira,et al.  Characterizing Dense Urban Areas from Mobile Phone-Call Data: Discovery and Social Dynamics , 2010, 2010 IEEE Second International Conference on Social Computing.

[49]  Juha Korhonen,et al.  Introduction to 3G Mobile Communications , 2001 .

[50]  Daniel A. Keim,et al.  A framework for using self-organising maps to analyse spatio-temporal patterns, exemplified by analysis of mobile phone usage , 2010, J. Locat. Based Serv..

[51]  Gennady L. Andrienko,et al.  Discovering bits of place histories from people's activity traces , 2010, 2010 IEEE Symposium on Visual Analytics Science and Technology.

[52]  Alexei Pozdnoukhov,et al.  Spatial structure and dynamics of urbancommunities , 2011 .

[53]  Ronan Farrell,et al.  Utilising Mobile Phone Billing Records for Travel Made Discovery , 2011 .

[54]  Hunter N. B. Moseley,et al.  Limits of Predictability in Human Mobility , 2010 .

[55]  Sougata Mukherjea,et al.  Analyzing the Structure and Evolution of Massive Telecom Graphs , 2008, IEEE Transactions on Knowledge and Data Engineering.

[56]  John A. Quinn,et al.  Methodologies for Continuous Cellular Tower Data Analysis , 2009, Pervasive.

[57]  Vanessa Frías-Martínez,et al.  An Agent-Based Model of Epidemic Spread Using Human Mobility and Social Network Information , 2011, 2011 IEEE Third Int'l Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int'l Conference on Social Computing.

[58]  A. Barabasi,et al.  Analysis of a large-scale weighted network of one-to-one human communication , 2007, physics/0702158.

[59]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[60]  Carlo Ratti,et al.  Mobile Landscapes: Using Location Data from Cell Phones for Urban Analysis , 2006 .

[61]  Yan Wan,et al.  Mobile Customer Clustering Based on Call Detail Records for Marketing Campaigns , 2009, 2009 International Conference on Management and Service Science.

[62]  Hui Zang,et al.  Are call detail records biased for sampling human mobility? , 2012, MOCO.

[63]  R. Ahas,et al.  Seasonal tourism spaces in Estonia: Case study with mobile positioning data , 2007 .

[64]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[65]  Nathan Eagle,et al.  Community Computing: Comparisons between Rural and Urban Societies Using Mobile Phone Data , 2009, 2009 International Conference on Computational Science and Engineering.

[66]  John A. Quinn,et al.  Location Segmentation, Inference and Prediction for Anticipatory Computing , 2009, AAAI Spring Symposium: Technosocial Predictive Analytics.

[67]  O. Järv,et al.  Mobile Phones in a Traffic Flow: A Geographical Perspective to Evening Rush Hour Traffic Analysis Using Call Detail Records , 2012, PloS one.

[68]  Ramón Cáceres,et al.  A Tale of One City: Using Cellular Network Data for Urban Planning , 2011, IEEE Pervasive Computing.

[69]  Liang Liu,et al.  Estimating Origin-Destination Flows Using Mobile Phone Location Data , 2011, IEEE Pervasive Computing.

[70]  Youngbin Yim The State of Cellular Probes , 2003 .

[71]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.