Imprint of Southern Ocean eddies on chlorophyll

Abstract. Although mesoscale ocean eddies are ubiquitous in the Southern Ocean, their spatial and seasonal association with phytoplankton has to date not been quantified in detail. To this end, we identify over 100,000 eddies in the Southern Ocean and determine the associated phytoplankton biomass anomalies using satellite-based chlorophyll-a (Chl) as a proxy. The mean eddy associated Chl anomalies (𝛿Chl) exceed p10 % over wide regions. The structure of these anomalies is largely zonal, with cyclonic, thermocline lifting, eddies having positive anomalies in the subtropical waters north of the Antarctic Circumpolar Current (ACC) and negative anomalies along the ACC. The pattern is similar, but reversed for anticyclonic, thermocline deepening eddies. The seasonality of 𝛿Chl is weak in subtropical waters, but pronounced along the ACC, featuring a seasonal sign switch. The spatial structure and seasonality of 𝛿Chl can be explained largely by lateral advection, especially eddy- stirring . A prominent exception is the ACC region in winter, where 𝛿Chl is consistent with a modulation of phytoplankton light exposure caused by an eddy-induced modification of the mixed layer depth. The clear impact of eddies on phytoplankton may implicate a downstream effect on Southern Ocean biogeochemical properties, such as mode water nutrient contents.

[1]  S. Maritorena,et al.  Consistent merging of satellite ocean color data sets using a bio-optical model , 2005 .

[2]  Craig M. Lee,et al.  Eddy-Driven Stratification Initiates North Atlantic Spring Phytoplankton Blooms , 2012, Science.

[3]  P. Peterson,et al.  Satellite and in situ observations of the bio-optical signatures of two mesoscale eddies in the Sargasso Sea , 2008 .

[4]  Michael J. Behrenfeld,et al.  Regional variations in the influence of mesoscale eddies on near‐surface chlorophyll , 2014 .

[5]  Janet W. Campbell,et al.  The lognormal distribution as a model for bio‐optical variability in the sea , 1995 .

[6]  K. Speer,et al.  Response of the Antarctic Circumpolar Current to atmospheric variability , 2008 .

[7]  D. McGillicuddy,et al.  Mechanisms of Physical-Biological-Biogeochemical Interaction at the Oceanic Mesoscale. , 2016, Annual review of marine science.

[8]  Reto Knutti,et al.  Imprint of Southern Ocean eddies on winds, clouds and rainfall , 2013 .

[9]  Y. Amitai,et al.  Long range transport of a quasi isolated chlorophyll patch by an Agulhas ring , 2011 .

[10]  A. Mahadevan,et al.  Comment on "Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms" , 2008, Science.

[11]  C. L. Leonard,et al.  Coastal zone color scanner pigment concentrations in the Southern Ocean and relationships to geophysical surface features , 1993 .

[12]  Glenn R. Flierl,et al.  Particle motions in large-amplitude wave fields , 1981 .

[13]  S. Maritorena,et al.  Merged satellite ocean color data products using a bio-optical model: Characteristics, benefits and issues , 2010 .

[14]  K. Denman,et al.  Phytoplankton patchiness indicates the fluctuation spectrum of mesoscale oceanic structure , 1980, Nature.

[15]  Mark R. Abbott,et al.  Surface chlorophyll concentrations in relation to the Antarctic Polar Front: seasonal and spatial patterns from satellite observations , 2002 .

[16]  S. Sokolov,et al.  On the relationship between fronts of the Antarctic Circumpolar Current and surface chlorophyll concentrations in the Southern Ocean , 2007 .

[17]  S. De Monte,et al.  Fluid dynamical niches of phytoplankton types , 2010, Proceedings of the National Academy of Sciences.

[18]  P. Falkowski,et al.  Ocean Science: The power of plankton , 2012, Nature.

[19]  P. Falkowski,et al.  Role of eddy pumping in enhancing primary production in the ocean , 1991, Nature.

[20]  S. Gille,et al.  Southern Ocean wind‐driven entrainment enhances satellite chlorophyll‐a through the summer , 2015 .

[21]  Jeffrey J. Early,et al.  The Evolution and Propagation of Quasigeostrophic Ocean Eddies , 2011 .

[22]  K. Bernard,et al.  Entrainment of Antarctic euphausiids across the Antarctic Polar Front by a cold eddy , 2007 .

[23]  P. Ryan,et al.  Exploitation of mesoscale oceanographic features by grey-headed albatross Thalassarche chrysostoma in the southern Indian Ocean , 2001 .

[24]  Peter Cornillon,et al.  Modification of surface winds near ocean fronts: Effects of Gulf Stream rings on scatterometer (QuikSCAT, NSCAT) wind observations , 2006 .

[25]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[26]  D. Chelton,et al.  The Influence of Nonlinear Mesoscale Eddies on Near-Surface Oceanic Chlorophyll , 2011, Science.

[27]  D. Chelton,et al.  Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies , 2013 .

[28]  David A. Siegel,et al.  Bio‐optical footprints created by mesoscale eddies in the Sargasso Sea , 2011 .

[29]  G. Haller Lagrangian Coherent Structures , 2015 .

[30]  Nicholas R. Bates,et al.  Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms , 2007, Science.

[31]  L. Bopp,et al.  The response of phytoplankton biomass to transient mixing events in the Southern Ocean , 2011 .

[32]  Anthony J Richardson,et al.  Anticyclonic eddies are more productive than cyclonic eddies in subtropical gyres because of winter mixing , 2016, Science Advances.

[33]  S. Rintoul,et al.  Localized subduction of anthropogenic carbon dioxide in the Southern Hemisphere oceans , 2012 .

[34]  Jorge L. Sarmiento,et al.  Ocean Biogeochemical Dynamics , 2006 .

[35]  J. Marshall,et al.  Observed mesoscale eddy signatures in Southern Ocean surface mixed-layer depth: SOUTHERN OCEAN EDDY MIXED-LAYER DEPTHS , 2017 .

[36]  John Horne,et al.  Mesoscale Eddies Are Oases for Higher Trophic Marine Life , 2012, PloS one.

[37]  M. Kahru,et al.  Eddies enhance biological production in the Weddell‐Scotia Confluence of the Southern Ocean , 2007 .

[38]  George Haller,et al.  Objective Detection of Oceanic Eddies and the Agulhas Leakage , 2013 .

[39]  D. Chelton,et al.  Global observations of nonlinear mesoscale eddies , 2011 .

[40]  Lars Stemmann,et al.  The wineglass effect shapes particle export to the deep ocean in mesoscale eddies , 2016 .

[41]  V. Garçon,et al.  Event‐scale blooms drive enhanced primary productivity at the Subtropical Convergence , 2005 .

[42]  D. Chambers,et al.  Mean Dynamic Topography of the Ocean Derived from Satellite and Drifting Buoy Data Using Three Different Techniques , 2009 .

[43]  M. Long,et al.  Seasonal Variation in the Correlation Between Anomalies of Sea Level and Chlorophyll in the Antarctic Circumpolar Current , 2018, Geophysical Research Letters.

[44]  A. Oschlies Can eddies make ocean deserts bloom? , 2002 .

[45]  M. Fuentes,et al.  Mesoscale variability of Sea‐viewing Wide Field‐of‐view Sensor (SeaWiFS) satellite ocean color: Global patterns and spatial scales , 2003 .

[46]  P. Gaube,et al.  Anomalous chlorofluorocarbon uptake by mesoscale eddies in the Drake Passage region , 2015 .

[47]  L. Pomeroy The Ocean's Food Web, A Changing Paradigm , 1974 .

[48]  K. Arrigo,et al.  Mapping phytoplankton iron utilization: Insights into Southern Ocean supply mechanisms , 2012 .

[49]  James C. McWilliams,et al.  Eddy-induced reduction of biological production in eastern boundary upwelling systems , 2011 .

[50]  D. Stammer Global Characteristics of Ocean Variability Estimated from Regional TOPEX/POSEIDON Altimeter Measurements , 1997 .

[51]  Corinne Le Quéré,et al.  Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles , 2016 .

[52]  Edward R. Abraham,et al.  The generation of plankton patchiness by turbulent stirring , 1998, Nature.

[53]  P. Xiu,et al.  Seasonal variability and mechanisms regulating chlorophyll distribution in mesoscale eddies in the South China Sea , 2017 .

[54]  J. Yoder,et al.  High frequency and mesoscale variability in SeaWiFS chlorophyll imagery and its relation to other remotely sensed oceanographic variables , 2004 .

[55]  P. Cipollini,et al.  Manifestation of oceanic Rossby waves in long-term multiparametric satellite datasets , 2013 .

[56]  Reto Knutti,et al.  Southern Ocean eddy phenomenology , 2015 .

[57]  P. Monteiro,et al.  Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean , 2011 .

[58]  M. Lévy,et al.  Characterization of distinct bloom phenology regimes in the Southern Ocean , 2015 .

[59]  P. Boyd,et al.  ENVIRONMENTAL FACTORS CONTROLLING PHYTOPLANKTON PROCESSES IN THE SOUTHERN OCEAN1 , 2002 .

[60]  M. Meredith,et al.  Theory and observations of Ekman flux in the chlorophyll distribution downstream of South Georgia , 2009 .