Stability in shape optimization with second variation
暂无分享,去创建一个
[1] N. Fusco,et al. Communications in Mathematical Physics Minimality via Second Variation for a Nonlocal Isoperimetric Problem , 2013 .
[2] E. Stein,et al. Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .
[3] Marie-Thérèse Kohler-Jobin. Une méthode de comparaison isopérimétrique de fonctionnelles de domaines de la physique mathématique I. Première partie: une démonstration de la conjecture isopérimétrique Pλ2 ≥ πj04/2 de Pólya et Szegö , 1978 .
[4] M. Abramowitz,et al. Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables , 1966 .
[5] STABLE CONSTANT MEAN CURVATURE HYPERSURFACES ARE AREA MINIMIZING IN SMALL L 1 NEIGHBORHOODS , 2008, 0811.3126.
[6] B. Fuglede. Stability in the isoperimetric problem for convex or nearly spherical domains in ⁿ , 1989 .
[7] G. P. Leonardi,et al. A Selection Principle for the Sharp Quantitative Isoperimetric Inequality , 2010, Archive for Rational Mechanics and Analysis.
[8] F. Caubet,et al. Stability of critical shapes for the drag minimization problem in Stokes flow , 2013 .
[9] F. Maggi,et al. Sharp stability inequalities for the Plateau problem , 2014 .
[10] C. Nitsch. An isoperimetric result for the fundamental frequency via domain derivative , 2012, 1201.5328.
[11] G. Philippis,et al. Faber–Krahn inequalities in sharp quantitative form , 2013, 1306.0392.
[12] M. Novaga,et al. Existence and Stability for a Non-Local Isoperimetric Model of Charged Liquid Drops , 2013, Archive for Rational Mechanics and Analysis.
[13] A sharp quantitative isoperimetric inequality in higher codimension , 2015 .
[14] Fabien Caubet,et al. DETECTING AN OBSTACLE IMMERSED IN A FLUID BY SHAPE OPTIMIZATION METHODS , 2011 .
[15] Karsten Große-Brauckmann,et al. Stable constant mean curvature surfaces minimize area , 1996 .
[16] N. Fusco,et al. A quantitative form of Faber–Krahn inequality , 2017 .
[17] Robin Neumayer,et al. A Strong Form of the Quantitative Wulff Inequality , 2015, SIAM J. Math. Anal..
[18] A. Ioffe. Necessary and Sufficient Conditions for a Local Minimum. 3: Second Order Conditions and Augmented Duality , 1979 .
[19] H. Weinberger,et al. Some isoperimetric inequalities for membrane frequencies and torsional rigidity , 1961 .
[20] G. Pólya,et al. Isoperimetric inequalities in mathematical physics , 1951 .
[21] Marc Dambrine,et al. On variations of the shape Hessian and sufficient conditions for the stability of critical shapes. , 2002 .
[22] J. Simon,et al. Second variations for domain optimization problems , 1989 .
[23] Michel Dambrine,et al. On Second Order Shape Optimization Methods for Electrical Impedance Tomography , 2007, SIAM J. Control. Optim..
[24] A. Figalli,et al. A mass transportation approach to quantitative isoperimetric inequalities , 2010 .
[25] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[26] M. C. Delfour,et al. Shapes and Geometries - Metrics, Analysis, Differential Calculus, and Optimization, Second Edition , 2011, Advances in design and control.
[27] Alessio Figalli,et al. Isoperimetry and Stability Properties of Balls with Respect to Nonlocal Energies , 2014, Communications in Mathematical Physics.
[28] N. Fusco,et al. The sharp quantitative isoperimetric inequality , 2008 .
[29] Matthew MacDonald,et al. Shapes and Geometries , 1987 .
[30] N. Fusco,et al. Stability estimates for certain Faber-Krahn, isocapacitary and Cheeger inequalities , 2009 .
[31] M. Dambrine,et al. ON THE ERSATZ MATERIAL APPROXIMATION IN LEVEL-SET METHODS , 2010 .
[32] Peter Sternberg,et al. On the first and second variations of a nonlocal isoperimetric problem , 2007 .
[33] Reinhold Böhme,et al. Zur Struktur der Lösungsmenge des Plateauproblems , 1973 .
[34] Arian Novruzi,et al. Structure of shape derivatives , 2002 .
[35] L. W.,et al. The Theory of Sound , 1898, Nature.
[36] N. Fusco,et al. A strong form of the quantitative isoperimetric inequality , 2011, 1111.4866.
[37] Marc Dambrine,et al. About stability of equilibrium shapes , 2000 .
[38] Jimmy Lamboley,et al. Structure of shape derivatives around irregular domains and applications , 2006 .
[39] E. Casas,et al. Second Order Optimality Conditions and Their Role in PDE Control , 2015 .
[40] Antoine Henrot,et al. Variation et optimisation de formes , 2005 .
[41] B. White. A strong minimax property of nondegenerate minimal submanifolds. , 1994 .
[42] Winfried Sickel,et al. Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations , 1996, de Gruyter series in nonlinear analysis and applications.
[43] Jack K. Hale,et al. Perturbation of the Boundary in Boundary-Value Problems of Partial Differential Equations , 2005 .