SHARP ERROR BOUNDS FOR THE TRAPEZOIDAL RULE AND SIMPSON'S RULE
暂无分享,去创建一个
[1] Edmund Taylor Whittaker,et al. A Course of Modern Analysis , 2021 .
[2] R. Mises. Über allgemeine Quadraturformeln. , 1936 .
[3] Anders Reiz. On quadrature formulae , 1950 .
[4] M. E. Munroe. Review: I. P. Natanson, Theorie der Funktionen einer reellen Veränderlichen , 1955 .
[5] I. P. Natanson,et al. Theorie der Funktionen einer reellen Veränderlichen , 1956 .
[6] A. Stroud. Estimating Quadrature Errors for Functions with Low Continuity , 1966 .
[7] E. Gumbel,et al. Selected Papers of Richard von Mises , 1966 .
[8] H. Melvin Lieberstein,et al. A course in numerical analysis , 1968 .
[9] E. Stein,et al. Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .
[10] Harley Fanders. Review: G. Pólya and G. Szegö, Problems and theorems in analysis , 1978 .
[11] Estimating the Error in the Trapezoidal Rule , 1980 .
[12] G. Pólya,et al. Problems and theorems in analysis , 1983 .
[13] La Règle Du Trapèze Appliquée à Quelques Fonctions Sans Dérivées , 1983, Canadian Mathematical Bulletin.
[14] C. Bennett,et al. Interpolation of operators , 1987 .
[15] Gerhard Schmeisser,et al. Characterization of the speed of convergence of the trapezoidal rule , 1990 .
[16] On some problems concerning best constants for the midpoint and trapezoidal rule , 1992 .
[17] S. Dragomir,et al. A Generalisation of the Trapezoidal Rule for the Riemann-Stieltjes Integral and Applications , 2000 .
[19] Sharp bounds for integral means , 2002 .
[20] (D. Cruz-Uribe): Sharp error bounds for the trapezoidal rule and Simpson's rule. , 2003 .