SHARP ERROR BOUNDS FOR THE TRAPEZOIDAL RULE AND SIMPSON'S RULE

We give error bounds for the trapezoidal rule and Simpson's rule for "rough" con- tinuous functions—for instance, functions which are Holder continuous, of bounded variation, or which are absolutely continuous and whose derivative is in L p . These differ considerably from the classical results, which require the functions to have continuous higher derivatives. Further, we show that our results are sharp, and in many cases precisely characterize the functions for which equality holds. One consequence of these results is that for rough functions, the error esti- mates for the trapezoidal rule are better (that is, have smaller constants) than those for Simpson's rule.

[1]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[2]  R. Mises Über allgemeine Quadraturformeln. , 1936 .

[3]  Anders Reiz On quadrature formulae , 1950 .

[4]  M. E. Munroe Review: I. P. Natanson, Theorie der Funktionen einer reellen Veränderlichen , 1955 .

[5]  I. P. Natanson,et al.  Theorie der Funktionen einer reellen Veränderlichen , 1956 .

[6]  A. Stroud Estimating Quadrature Errors for Functions with Low Continuity , 1966 .

[7]  E. Gumbel,et al.  Selected Papers of Richard von Mises , 1966 .

[8]  H. Melvin Lieberstein,et al.  A course in numerical analysis , 1968 .

[9]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[10]  Harley Fanders Review: G. Pólya and G. Szegö, Problems and theorems in analysis , 1978 .

[11]  Estimating the Error in the Trapezoidal Rule , 1980 .

[12]  G. Pólya,et al.  Problems and theorems in analysis , 1983 .

[13]  La Règle Du Trapèze Appliquée à Quelques Fonctions Sans Dérivées , 1983, Canadian Mathematical Bulletin.

[14]  C. Bennett,et al.  Interpolation of operators , 1987 .

[15]  Gerhard Schmeisser,et al.  Characterization of the speed of convergence of the trapezoidal rule , 1990 .

[16]  On some problems concerning best constants for the midpoint and trapezoidal rule , 1992 .

[17]  S. Dragomir,et al.  A Generalisation of the Trapezoidal Rule for the Riemann-Stieltjes Integral and Applications , 2000 .

[18]  A Generalization of the Ostrowski Integral Inequality for Mappings Whose Derivatives Belong to Lp[a, b] and Applications in Numerical Integration☆ , 2001 .

[19]  Sharp bounds for integral means , 2002 .

[20]  (D. Cruz-Uribe): Sharp error bounds for the trapezoidal rule and Simpson's rule. , 2003 .