Characters of the BMS Group in Three Dimensions

[1]  G. Barnich,et al.  Notes on the BMS group in three dimensions: II. Coadjoint representation , 2015, 1502.00010.

[2]  Ricardo Troncoso,et al.  Higher spin extension of cosmological spacetimes in 3D: asymptotically flat behaviour with chemical potentials and thermodynamics , 2014, 1412.1464.

[3]  Ricardo Troncoso,et al.  Asymptotic symmetries and dynamics of three-dimensional flat supergravity , 2014, 1407.4275.

[4]  G. Barnich,et al.  Notes on the BMS group in three dimensions: I. Induced representations , 2014, 1403.5803.

[5]  D. Grumiller,et al.  Unitarity in three-dimensional flat space higher spin theories , 2014, 1403.5297.

[6]  D. Grumiller,et al.  Spin-3 gravity in three-dimensional flat space. , 2013, Physical review letters.

[7]  J. Simón,et al.  Holography of 3D flat cosmological horizons. , 2012, Physical review letters.

[8]  G. Barnich Entropy of three-dimensional asymptotically flat cosmological solutions , 2012, 1208.4371.

[9]  G. Barnich,et al.  The flat limit of three dimensional asymptotically anti-de Sitter spacetimes , 2012, 1204.3288.

[10]  G. Barnich,et al.  Supertranslations call for superrotations , 2011, 1102.4632.

[11]  R. Cooke Real and Complex Analysis , 2011 .

[12]  A. Wassermann Direct proofs of the Feigin-Fuchs character formula for unitary representations of the Virasoro algebra , 2010, 1012.6003.

[13]  A. Wassermann Kac-Moody and Virasoro algebras , 2010, 1004.1287.

[14]  Ipsita Mandal Supersymmetric extension of GCA in 2d , 2010, 1003.0209.

[15]  G. Barnich,et al.  Aspects of the BMS/CFT correspondence , 2010, 1001.1541.

[16]  G. Mackey Infinite Dimensional Group Representations and their Applications , 2010 .

[17]  R. Blumenhagen,et al.  Introduction to Conformal Field Theory: With Applications to String Theory , 2009 .

[18]  A. Maloney,et al.  One-loop Partition Functions of 3D Gravity , 2008, 0804.1773.

[19]  V. Bogachev Gaussian Measures on a , 2022 .

[20]  G. Compère,et al.  Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions , 2006, gr-qc/0610130.

[21]  M. Flohr,et al.  Conformal Field Theory , 2006 .

[22]  Jialing Dai,et al.  The orbit method and the Virasoro extension of Diff+(S1): I. Orbital integrals , 2003 .

[23]  H. Airault Mesure unitarisante : algèbre de Heisenberg, algèbre de Virasoro , 2002 .

[24]  Hiroaki Shimomura Quasi-invariant Measures on the Group of Diffeomorphisms and Smooth Vectors of Unitary Representations , 2001 .

[25]  P. Malliavin,et al.  Unitarizing probability measures for representations of Virasoro algebra , 2001 .

[26]  L. Fehér,et al.  COADJOINT ORBITS OF THE VIRASORO ALGEBRA AND THE GLOBAL LIOUVILLE EQUATION , 1997, hep-th/9703045.

[27]  A. Ashtekar,et al.  Asymptotic structure of symmetry reduced general relativity , 1996, gr-qc/9608042.

[28]  O. W. Greenberg,et al.  The quantum theory of fields, Vol. II: Modern applications, by Steven Weinberg , 1997 .

[29]  E. Shavgulidze Mesures quasi-invariantes sur les groupes de diffeomorphismes des variétés riemanniennes , 1995 .

[30]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[31]  A. Verjovsky,et al.  Diff (S1) and the Teichmüller spaces , 1990 .

[32]  E. Witten Coadjoint orbits of the Virasoro group , 1988 .

[33]  Marc Henneaux,et al.  Central charges in the canonical realization of asymptotic symmetries: An example from three dimensional gravity , 1986 .

[34]  Wu-Ki Tung,et al.  Group Theory in Physics , 1985 .

[35]  G. Reid ELEMENTS OF THE THEORY OF REPRESENTATIONS , 1978 .

[36]  E. T. Shavgulidze An example of a measure quasi-invariant under the action of the diffeomorphism group of the circle , 1978 .

[37]  A. Barut,et al.  Theory of group representations and applications , 1977 .

[38]  A. Kirillov Elements of the theory of representations , 1976 .

[39]  V. Lazutkin,et al.  Normal forms and versal deformations for Hill's equation , 1975 .

[40]  G. Fuchs,et al.  Characters of the Poincaré Group , 1970 .

[41]  R. Schrader,et al.  On the primitive characters of the Poincaré group , 1968 .

[42]  G. Mackey Induced representations of groups and quantum mechanics , 1968 .

[43]  R. Shaw,et al.  Unitary representations of the inhomogeneous Lorentz group , 1964 .

[44]  G. Mackey Infinite-dimensional group representations , 1963 .