Characters of the BMS Group in Three Dimensions
暂无分享,去创建一个
[1] G. Barnich,et al. Notes on the BMS group in three dimensions: II. Coadjoint representation , 2015, 1502.00010.
[2] Ricardo Troncoso,et al. Higher spin extension of cosmological spacetimes in 3D: asymptotically flat behaviour with chemical potentials and thermodynamics , 2014, 1412.1464.
[3] Ricardo Troncoso,et al. Asymptotic symmetries and dynamics of three-dimensional flat supergravity , 2014, 1407.4275.
[4] G. Barnich,et al. Notes on the BMS group in three dimensions: I. Induced representations , 2014, 1403.5803.
[5] D. Grumiller,et al. Unitarity in three-dimensional flat space higher spin theories , 2014, 1403.5297.
[6] D. Grumiller,et al. Spin-3 gravity in three-dimensional flat space. , 2013, Physical review letters.
[7] J. Simón,et al. Holography of 3D flat cosmological horizons. , 2012, Physical review letters.
[8] G. Barnich. Entropy of three-dimensional asymptotically flat cosmological solutions , 2012, 1208.4371.
[9] G. Barnich,et al. The flat limit of three dimensional asymptotically anti-de Sitter spacetimes , 2012, 1204.3288.
[10] G. Barnich,et al. Supertranslations call for superrotations , 2011, 1102.4632.
[11] R. Cooke. Real and Complex Analysis , 2011 .
[12] A. Wassermann. Direct proofs of the Feigin-Fuchs character formula for unitary representations of the Virasoro algebra , 2010, 1012.6003.
[13] A. Wassermann. Kac-Moody and Virasoro algebras , 2010, 1004.1287.
[14] Ipsita Mandal. Supersymmetric extension of GCA in 2d , 2010, 1003.0209.
[15] G. Barnich,et al. Aspects of the BMS/CFT correspondence , 2010, 1001.1541.
[16] G. Mackey. Infinite Dimensional Group Representations and their Applications , 2010 .
[17] R. Blumenhagen,et al. Introduction to Conformal Field Theory: With Applications to String Theory , 2009 .
[18] A. Maloney,et al. One-loop Partition Functions of 3D Gravity , 2008, 0804.1773.
[19] V. Bogachev. Gaussian Measures on a , 2022 .
[20] G. Compère,et al. Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions , 2006, gr-qc/0610130.
[21] M. Flohr,et al. Conformal Field Theory , 2006 .
[22] Jialing Dai,et al. The orbit method and the Virasoro extension of Diff+(S1): I. Orbital integrals , 2003 .
[23] H. Airault. Mesure unitarisante : algèbre de Heisenberg, algèbre de Virasoro , 2002 .
[24] Hiroaki Shimomura. Quasi-invariant Measures on the Group of Diffeomorphisms and Smooth Vectors of Unitary Representations , 2001 .
[25] P. Malliavin,et al. Unitarizing probability measures for representations of Virasoro algebra , 2001 .
[26] L. Fehér,et al. COADJOINT ORBITS OF THE VIRASORO ALGEBRA AND THE GLOBAL LIOUVILLE EQUATION , 1997, hep-th/9703045.
[27] A. Ashtekar,et al. Asymptotic structure of symmetry reduced general relativity , 1996, gr-qc/9608042.
[28] O. W. Greenberg,et al. The quantum theory of fields, Vol. II: Modern applications, by Steven Weinberg , 1997 .
[29] E. Shavgulidze. Mesures quasi-invariantes sur les groupes de diffeomorphismes des variétés riemanniennes , 1995 .
[30] Joe Harris,et al. Representation Theory: A First Course , 1991 .
[31] A. Verjovsky,et al. Diff (S1) and the Teichmüller spaces , 1990 .
[32] E. Witten. Coadjoint orbits of the Virasoro group , 1988 .
[33] Marc Henneaux,et al. Central charges in the canonical realization of asymptotic symmetries: An example from three dimensional gravity , 1986 .
[34] Wu-Ki Tung,et al. Group Theory in Physics , 1985 .
[35] G. Reid. ELEMENTS OF THE THEORY OF REPRESENTATIONS , 1978 .
[36] E. T. Shavgulidze. An example of a measure quasi-invariant under the action of the diffeomorphism group of the circle , 1978 .
[37] A. Barut,et al. Theory of group representations and applications , 1977 .
[38] A. Kirillov. Elements of the theory of representations , 1976 .
[39] V. Lazutkin,et al. Normal forms and versal deformations for Hill's equation , 1975 .
[40] G. Fuchs,et al. Characters of the Poincaré Group , 1970 .
[41] R. Schrader,et al. On the primitive characters of the Poincaré group , 1968 .
[42] G. Mackey. Induced representations of groups and quantum mechanics , 1968 .
[43] R. Shaw,et al. Unitary representations of the inhomogeneous Lorentz group , 1964 .
[44] G. Mackey. Infinite-dimensional group representations , 1963 .