Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC): FY10 Development and Integration

This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilitiesmore » that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.« less

[1]  C. Pantano,et al.  Dissolution of nepheline, jadeite and albite glasses: toward better models for aluminosilicate dissolution , 2001 .

[2]  Thomas A. Dewers,et al.  Alteration of fresh fault gouge from focal depths of recent earthquakes in deep mines , 2004 .

[3]  D. Ghaleb,et al.  Medium range structure of borosilicate glasses from Si K-edge XANES: a combined approach based on multiple scattering and molecular dynamics calculations , 2001 .

[4]  Enrique Merino,et al.  Geochemical Self-Organization II; the Reactive-Infiltration Instability , 1987, American Journal of Science.

[5]  K. Mueller,et al.  Theoretical and 27Al CPMAS NMR investigation of aluminum coordination changes during aluminosilicate dissolution , 2005 .

[6]  N. H. Leeuw,et al.  Shell-model molecular dynamics calculations of modified silicate glasses , 2006 .

[7]  Albert J. Valocchi,et al.  Accuracy of operator splitting for advection‐dispersion‐reaction problems , 1992 .

[8]  B. Jones,et al.  WATEQ: A COMPUTER PROGRAM FOR CALCULATING CHEMICAL EQUILIBRIA OF NATURAL WATERS , 1973 .

[9]  A. Lüttge,et al.  Al,Si order in albite and its effect on albite dissolution processes: A Monte Carlo study , 2007 .

[10]  M. Aertsens Testing the Grambow Glass Dissolution Model by Comparing it With Monte Carlo Simulation Results , 1999 .

[11]  A. Lasaga,et al.  Variation of Crystal Dissolution Rate Based on a Dissolution Stepwave Model , 2001, Science.

[12]  Karsten Pruess,et al.  TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive geochemical Transport in Variable Saturated Geologic Media , 2004 .

[13]  P. Van Iseghem,et al.  Chemical durability of high-level waste glass in repository environment: main conclusions and remaining uncertainties from the GLASTAB and GLAMOR projects , 2006 .

[14]  P. Frugier,et al.  Long-term modeling of alteration-transport coupling: Application to a fractured Roman glass , 2010 .

[15]  Eric H. Oelkers,et al.  General kinetic description of multioxide silicate mineral and glass dissolution , 2001 .

[16]  James W. Ball,et al.  A Comparison of Computerized Chemical Models for Equilibrium Calculations in Aqueous Systems , 1979 .

[17]  Susan L. Brantley,et al.  Kinetics of Mineral Dissolution , 2008 .

[18]  C. Appelo,et al.  Multicomponent diffusion modeling in clay systems with application to the diffusion of tritium, iodide, and sodium in Opalinus Clay. , 2007, Environmental science & technology.

[19]  Thomas Dewers,et al.  Chapter 7 Formation of Stylolites, Marl/Limestone Alternations, And Dissolution (Clay) Seams by Unstable Chemical Compaction Of Argillaceous Carbonates , 1994 .

[20]  David L. Parkhurst,et al.  Phreeqe--A Computer Program for Geochemical Calculations , 1980 .

[21]  A. Cormack,et al.  Local structures of MD-modeled vitreous silica and sodium silicate glasses , 2001 .

[22]  J. Bandstra,et al.  Surface evolution of dissolving minerals investigated with a kinetic Ising model , 2008 .

[23]  Henning Prommer,et al.  PHT3D – A three-dimensional biogeochemical transport model for modelling natural and enhanced remediation.In Johnston, C. D., editor,Proceedings of the , 1999 .

[24]  D. L. Parkhurst,et al.  User's guide to PHREEQC (Version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations , 1999 .

[25]  W. J. Weber,et al.  Materials Science of High-Level Nuclear Waste Immobilization , 2009 .

[26]  Peter C. Lichtner,et al.  Continuum formulation of multicomponent-multiphase reactive transport , 1996 .

[27]  A. Lüttge,et al.  Theoretical approach to evaluating plagioclase dissolution mechanisms , 2009 .

[28]  Yousif K. Kharaka,et al.  A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling , 2004 .

[29]  S. Gíslason,et al.  The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25°C and pH = 3 and 11 , 2001 .

[30]  Eric M. Pierce,et al.  The Accelerated Weathering of a Radioactive Low-Activity Waste Glass under Hydraulically Unsaturated Conditions: Experimental Results from a Pressurized Unsaturated Flow Test , 2006 .

[31]  Linda J. Broadbelt,et al.  Generic Monte Carlo Tool for Kinetic Modeling , 2001 .

[32]  C. Steefel,et al.  Reactive transport modeling: An essential tool and a new research approach for the Earth sciences , 2005 .

[33]  R. Garrels,et al.  Solutions, Minerals and Equilibria , 1965 .

[34]  Rebecca M. Brannon,et al.  KAYENTA : theory and user's guide. , 2009 .

[35]  E. Oelkers,et al.  SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 ° C , 1992 .

[36]  Daan Frenkel,et al.  Configurational bias Monte Carlo: a new sampling scheme for flexible chains , 1992 .

[37]  K. Eisenthal,et al.  Polarization of water molecules at a charged interface: second harmonic studies of the silica/water interface , 1992 .

[38]  Robert J. MacKinnon,et al.  Potential impacts of alternative waste forms on long-term performance of geological repositories for radioactive waste. , 2010 .

[39]  K. Knauss,et al.  The dissolution kinetics of quartz as a function of pH and time at 70°C , 1988 .

[40]  S. Gíslason,et al.  The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74°C , 2004 .

[41]  Thomas Dewers,et al.  A coupled reaction/transport/mechanical model for intergranular pressure solution, stylolites, and differential compaction and cementation in clean sandstones , 1990 .

[42]  K. Mueller,et al.  Study of a Family of 40 Hydroxylated β-Cristobalite Surfaces Using Empirical Potential Energy Functions , 2007 .

[43]  T. J. Wolery,et al.  EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations: Theoretical manual, user`s guide, and related documentation (Version 7.0); Part 3 , 1992 .

[44]  Whirley DYNA3D: A nonlinear, explicit, three-dimensional finite element code for solid and structural mechanics , 1993 .

[45]  S. Nangia,et al.  Reaction rates and dissolution mechanisms of quartz as a function of pH. , 2008, The journal of physical chemistry. A.

[46]  H. Renon,et al.  Dissolution of quartz into dilute alkaline solutions at 90°C: A kinetic study , 1987 .

[47]  A. Lasaga,et al.  Kinetic justification of the solubility product: application of a general kinetic dissolution model. , 2005, The journal of physical chemistry. B.

[48]  I. Nielsen,et al.  Elucidating the bimodal acid-base behavior of the water-silica interface from first principles. , 2009, Journal of the American Chemical Society.

[49]  J. Stebbins,et al.  O atom sites in natural kaolinite and muscovite: 17O MAS and 3QMAS NMR study , 2003 .

[50]  William R. Smith,et al.  THE REACTION ENSEMBLE METHOD FOR THE COMPUTER SIMULATION OF CHEMICAL AND PHASE EQUILIBRIA. I: THEORY AND BASIC EXAMPLES , 1994 .

[51]  G. V. Gibbs,et al.  Mechanisms of silica dissolution as inferred from the kinetic isotope effect , 1990 .

[52]  E. Oelkers,et al.  Experimental study of K-feldspar dissolution rates as a function of chemical affinity at 150°C and pH 9 , 1994 .

[53]  Arlo F. Fossum,et al.  Progress on the development of a three-dimensional capability for simulating large-scale complex geologic processes , 1998 .

[54]  DEVELOPMENT OF THE NON-EQUILIBRIUM REACTIVE CHEMICAL TRANSPORT CODE CHMTRNS , 1987 .

[55]  New Mexico. for Sandia National Laboratories , 2009 .

[56]  Jincheng Du,et al.  Molecular Dynamics Simulation of the Structure and Hydroxylation of Silica Glass Surfaces , 2005 .

[57]  C. Bryan,et al.  Feldspar dissolution rates in the Topopah Spring Tuff, Yucca Mountain, Nevada , 2009 .

[58]  R. S. Schechter,et al.  ISOTHERM-FREE CHROMATOGRAPHY: PROPAGATION OF PRECIPITATION/DISSOLUTION WAVES , 1987 .

[59]  V. Freedman,et al.  Reactive Transport in Porous Media , 2000 .

[60]  Rebecca M. Brannon,et al.  The Sandia GeoModel : theory and user's guide. , 2004 .

[61]  Benjamin Whiting Spencer Presto 4.18 user's guide. , 2010 .

[62]  J. Tossell,et al.  Aluminosilicate and borosilicate single 4-rings: Effects of counterions and water on structure, stability, and spectra , 1997 .

[63]  Michael F. Hochella,et al.  Mineral-water interface geochemistry; an overview , 1990 .

[64]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[65]  Jose G. Arguello,et al.  Coupled Thermal-Mechanical Analyses of a Generic Salt Repository For High Level Waste , 2010 .

[66]  G. Blake,et al.  MOLECULAR ORBITAL CALCULATIONS FOR MODELING ACETATE-ALUMINOSILICATE ADSORPTION AND DISSOLUTION REACTIONS , 1997 .

[67]  Jonathan P. Icenhower,et al.  The dissolution kinetics of amorphous silica into sodium chloride solutions: effects of temperature and ionic strength , 2000 .

[68]  P. Dove,et al.  Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Roland Hellmann,et al.  Dissolution kinetics as a function of the Gibbs free energy of reaction: An experimental study based on albite feldspar , 2006 .

[70]  Lisa Grossman Breaking it down: Studies of how things fall apart may lead to materials that don't , 2010 .

[71]  P. Dove,et al.  Dissolution kinetics of quartz in sodium chloride solutions: Analysis of existing data and a rate model for 25°C , 1992 .

[72]  Miroslav Šejna,et al.  Development and Applications of the HYDRUS and STANMOD Software Packages and Related Codes , 2008 .

[73]  K. Gubbins,et al.  Reactive canonical Monte Carlo : a new simulation technique for reacting or associating fluids , 1994 .

[74]  J. Kubicki,et al.  Hydrogen isotope exchange kinetics between H2O and H4SiO4 from ab initio calculations , 2003 .

[75]  Krieg Reference stratigraphy and rock properties for the Waste Isolation Pilot Plant (WIPP) project , 1984 .

[76]  H. Abramczyk,et al.  Femtosecond transient absorption, Raman, and electrochemistry studies of tetrasulfonated copper phthalocyanine in water solutions. , 2006, The journal of physical chemistry. A.

[77]  Karsten Pruess,et al.  User's Guide for TOUGH2-MP - A Massively Parallel Version of the TOUGH2 Code , 2008 .

[78]  E. Oelkers,et al.  The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions , 1994 .

[79]  Jean-Eric Lartigue,et al.  SON68 nuclear glass dissolution kinetics: Current state of knowledge and basis of the new GRAAL model , 2008 .

[80]  J. A. Davis,et al.  Surface complexation modeling in aqueous geochemistry , 1990 .

[81]  H J Bakker,et al.  Dynamics of confined water molecules. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Jincheng Du,et al.  Alkali ion migration mechanisms in silicate glasses probed by molecular dynamics simulations , 2002 .

[83]  David L. Parkhurst,et al.  MIX2 : a computer program for modeling chemical reaction in natural waters , 1975 .

[84]  D. Flanagan,et al.  PRONTO 3D: A three-dimensional transient solid dynamics program , 1989 .

[85]  Yitian Xiao,et al.  Ab initio quantum mechanical studies of the kinetics and mechanisms of silicate dissolution: H+(H3O+) catalysis , 1994 .

[86]  C. Appelo,et al.  Multicomponent diffusion of a suite of tracers (HTO, Cl, Br, I, Na, Sr, Cs) in a single sample of Opalinus Clay , 2010 .

[87]  Yousif K. Kharaka,et al.  SOLMNEQ: Solution-mineral equilibrium computations , 1973 .

[88]  Jincheng Du,et al.  The medium range structure of sodium silicate glasses: a molecular dynamics simulation , 2004 .

[89]  Sohrab Rohani,et al.  Solution of population balance equations with a new combined Lax-Wendroff/Crank-Nicholson method , 2001 .

[90]  D. Lauffenburger Quantitative studies of bacterial chemotaxis and microbial population dynamics , 1991, Microbial Ecology.

[91]  W. Casey,et al.  Potentiometric and 19F nuclear magnetic resonance spectroscopic study of fluoride substitution in the GaAl12 polyoxocation: implications for aluminum (hydr)oxide mineral surfaces , 2003 .

[92]  C. Steefel,et al.  Kaolinite dissolution and precipitation kinetics at 22 °C and pH 4 , 2007 .

[93]  Harold C. Edwards,et al.  SIERRA Framework Version 3: Core Services Theory and Design , 2002 .

[94]  Bernd Grambow,et al.  Nuclear Waste Glasses - How Durable? , 2006 .

[95]  J. Rubin,et al.  Dispersion‐affected transport of reacting solutes in saturated porous media: Galerkin Method applied to equilibrium‐controlled exchange in unidirectional steady water flow , 1973 .

[96]  Enrique Merino,et al.  REDOX FRONT PROPAGATION AND BANDING MODALITIES , 1986 .

[97]  Julie F. Bouchard,et al.  Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) verification and validation plan. version 1. , 2011 .

[98]  A. Lasaga,et al.  Mineralogical approaches to fundamental crystal dissolution kinetics - Dissolution of an A3B structure , 2004 .

[99]  K. Ulrich Mayer,et al.  Reactive transport modeling in fractured rock: A state-of-the-science review , 2005 .

[100]  Howard W. Reeves,et al.  Multicomponent mass transport with homogeneous and heterogeneous chemical reactions: Effect of the chemistry on the choice of numerical algorithm: 1. Theory , 1988 .

[101]  Enrique Merino,et al.  Geochemical self-organization I; reaction-transport feedbacks and modeling approach , 1987 .

[102]  A. Lüttge,et al.  Aluminosilicate dissolution kinetics: a general stochastic model. , 2008, The journal of physical chemistry. B.

[103]  Rob L Howard,et al.  Challenge problem and milestones for : Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC). , 2010 .

[104]  S. Brantley Reaction Kinetics of Primary Rock-forming Minerals under Ambient Conditions , 2003 .

[105]  Howard W. Reeves,et al.  Multicomponent mass transport with homogeneous and heterogeneous chemical reactions: The effect of the chemistry on the choice of numerical algorithm, part 1. Theory , 1988 .

[106]  E. Merino,et al.  Diagenesis in Tertiary sandstones from Kettleman North Dome. California-II. Interstitial solutions: distribution of aqueous species at 100°C and chemical relation to the diagenetic mineralogy , 1975 .

[107]  C. Steefel,et al.  A new kinetic approach to modeling water-rock interaction: The role of nucleation, precursors, and Ostwald ripening , 1990 .

[108]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[109]  S. Brantley,et al.  Feldspar dissolution at 25 degrees C and low pH; discussion and reply , 1997 .

[110]  N. Møller,et al.  The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C , 1984 .

[111]  J. Delaye,et al.  Evidence for symmetric cationic sites in zirconium-bearing oxide glasses , 2006 .

[112]  T. J. Wolery,et al.  EQ3/6, a software package for geochemical modeling of aqueous systems: Package overview and installation guide (Version 7.0) , 1992 .

[113]  A. Lasaga,et al.  A model for crystal dissolution , 2003 .

[114]  P. Lichtner The quasi-stationary state approximation to coupled mass transport and fluid-rock interaction in a porous medium , 1988 .

[115]  John H. Weare,et al.  The prediction of mineral solubilities in natural waters: the NaKMgCaClSO4H2O system from zero to high concentration at 25° C , 1980 .

[116]  A. Lasaga,et al.  Ab initio quantum mechanical studies of the kinetics and mechanisms of quartz dissolution: OH− catalysis , 1996 .

[117]  W. Herrmann,et al.  Analysis of steady state creep of southeastern New Mexico bedded salt , 1980 .

[118]  James W. Ball,et al.  WATEQ4F -- User's manual with revised thermodynamic data base and test cases for calculating speciation of major, trace and redox elements in natural waters , 1991 .

[119]  Jean-Eric Lartigue,et al.  Application of the GRAAL model to leaching experiments with SON68 nuclear glass in initially pure water , 2009 .

[120]  K. Cantrell,et al.  Adsorption–Desorption Processes in Subsurface Reactive Transport Modeling , 2007 .

[121]  Michel Aubertin,et al.  A unified viscoplastic model for the inelastic flow of alkali halides , 1991 .

[122]  Jan Środoń,et al.  Ostwald Ripening of Clays and Metamorphic Minerals , 1990, Science.

[123]  Eric M. Pierce,et al.  Experimental determination of the effect of the ratio of B/Al on glass dissolution along the nepheline (NaAlSiO4)–malinkoite (NaBSiO4) join , 2010 .

[124]  J. Kubicki,et al.  Kinetics of water-rock interaction , 2008 .

[125]  K. Schulten,et al.  Water-silica force field for simulating nanodevices. , 2006, The journal of physical chemistry. B.

[126]  M. Benoit,et al.  Structural and vibrational properties of a calcium aluminosilicate glass: classical force-fields vs. first-principles , 2007 .

[127]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[128]  Amy Cha-Tien Sun,et al.  Enhanced Performance Assessment System (EPAS) for Carbon Sequestration , 2010 .

[129]  Martinus Oostrom,et al.  STOMP Subsurface Transport Over Multiple Phases, Version 4.0, User’s Guide , 2006 .

[130]  James R. Stewart,et al.  A framework approach for developing parallel adaptive multiphysics applications , 2004 .

[131]  J. D. Ramshaw Partial chemical equilibrium in fluid dynamics , 1980 .

[132]  Doraiswami Ramkrishna,et al.  Population Balances: Theory and Applications to Particulate Systems in Engineering , 2000 .

[133]  M. Menziani,et al.  Elastic and dynamical properties of alkali-silicate glasses from computer simulations techniques , 2008 .

[134]  Edward W. Bolton,et al.  An interferometric study of the dissolution kinetics of anorthite; the role of reactive surface area , 1999 .

[135]  S. Nangia,et al.  Ab initio investigation of dissolution mechanisms in aluminosilicate minerals. , 2009, The journal of physical chemistry. A.

[136]  S. Nangia,et al.  Theoretical advances in the dissolution studies of mineral–water interfaces , 2010 .

[137]  Michael F. Hochella,et al.  The formation of leached layers on albite surfaces during dissolution under hydrothermal conditions , 1990 .

[138]  Antonio Gens,et al.  A constitutive model for partially saturated soils , 1990 .

[139]  Carl I. Steefel,et al.  Scale dependence of mineral dissolution rates within single pores and fractures , 2008 .

[140]  A. Lasaga,et al.  Mineralogical approaches to fundamental crystal dissolution kinetics , 2004 .

[141]  Susan L. Brantley,et al.  NMR evidence for formation of octahedral and tetrahedral Al and repolymerization of the Si network during dissolution of aluminosilicate glass and crystal , 2003 .

[142]  D. Cole,et al.  Molecular Structure and Dynamics in Thin Water Films at the Silica and Graphite Surfaces , 2008 .

[143]  C. Appelo,et al.  A consistent model for surface complexation on birnessite (−MnO2) and its application to a column experiment , 1999 .

[144]  J. Ganor,et al.  The dissolution kinetics of a granite and its minerals—Implications for comparison between laboratory and field dissolution rates , 2005 .

[145]  F. Mauri,et al.  Structural properties of lithium and sodium tetrasilicate glasses: Molecular dynamics simulations versus NMR experimental and first-principles data , 2010 .

[146]  J. Leckie,et al.  Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces , 1987 .

[147]  N. H. Leeuw,et al.  The structure of bioactive silicate glasses : New insight from molecular dynamics simulations , 2007 .

[148]  Chuan Lu,et al.  Simulating subsurface flow and transport on ultrascale computers using PFLOTRAN , 2007 .

[149]  S. Nangia,et al.  Advanced Monte Carlo approach to study evolution of quartz surface during the dissolution process. , 2009, Journal of the American Chemical Society.

[150]  Simon J. Wheeler,et al.  An elasto-plastic critical state framework for unsaturated soil , 1995 .

[151]  W. Casey,et al.  The mechanism of dissolution of oxide minerals , 1996, Nature.

[152]  A. Tilocca,et al.  Exploring the Surface of Bioactive Glasses: Water Adsorption and Reactivity , 2008 .

[153]  Peter Andrew Schultz,et al.  Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC). , 2011 .

[154]  Glenn E. Hammond,et al.  Subsurface Multiphase Flow and Multicomponent Reactive Transport Modeling using High-Performance Computing , 2007 .

[155]  A. Cormack,et al.  Interaction of water with bioactive glass surfaces , 2006 .

[156]  L. Pettersson,et al.  Mechanism of Dissolution of Neutral Silica Surfaces: Including Effect of Self-Healing , 2001 .

[157]  C. Steefel,et al.  Approaches to modeling of reactive transport in porous media , 1996 .

[158]  James J. De Yoreo,et al.  Nanoscale Structure and Assembly at Solid-Fluid Interfaces , 2004 .

[159]  K. Pruess,et al.  TOUGH2 User's Guide Version 2 , 1999 .

[160]  Patrick Jollivet,et al.  Insight into silicate-glass corrosion mechanisms. , 2008, Nature materials.

[161]  N. D. de Leeuw,et al.  Molecular dynamics simulations of hydration, dissolution and nucleation processes at the α-quartz (0001) surface in liquid water , 2006 .

[162]  Denis M. Strachan,et al.  Compositional effects on long-term dissolution of borosilicate glass , 2000 .

[163]  Larry W. Lake,et al.  Precipitation and dissolution of solids attending flow through porous media , 1984 .

[164]  S. Brantley,et al.  The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? , 2003 .

[165]  David L. Parkhurst,et al.  A computer program incorporating Pitzer's equations for calculation of geochemical reactions in brines , 1988 .

[166]  J. Leszczynski,et al.  Lattice Resistance to Hydrolysis of Si−O−Si Bonds of Silicate Minerals: Ab Initio Calculations of a Single Water Attack onto the (001) and (111) β-Cristobalite Surfaces , 2000 .

[167]  R. Hellmann,et al.  An EFTEM/HRTEM high-resolution study of the near surface of labradorite feldspar altered at acid pH: evidence for interfacial dissolution-reprecipitation , 2003 .

[168]  D. Ghaleb,et al.  New techniques for modelling glass dissolution , 2001 .

[169]  M Puso,et al.  NIKE3D a nonlinear, implicit, three-dimensional finite element code for solid and structural mechanics user's manual update summary , 1991 .

[170]  B. P. Feuston,et al.  Water‐induced relaxation of the vitreous silica surface , 1990 .

[171]  P. Dove Kinetic and thermodynamic controls on silica reactivity in weathering environments , 1995 .

[172]  J. Allison,et al.  MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems: Version 3. 0 user's manual , 1991 .

[173]  M. Reed,et al.  Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase , 1982 .

[174]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[175]  T. Advocat,et al.  Long-term alteration mechanisms in water for SON68 radioactive borosilicate glass , 2001 .

[176]  D. Cole,et al.  Hydration structure on crystalline silica substrates. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[177]  J. Kubicki,et al.  Silicate glass and mineral dissolution: calculated reaction paths and activation energies for hydrolysis of a q3 si by H3O+ using ab initio methods. , 2006, The journal of physical chemistry. A.

[178]  Craig M. Bethke,et al.  Geochemical Reaction Modeling: Concepts and Applications , 1996 .

[179]  Alfonso Pedone,et al.  A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses. , 2006, The journal of physical chemistry. B.

[180]  V. S. Tripathi,et al.  A critical evaluation of recent developments in hydrogeochemical transport models of reactive multichemical components , 1989 .