Genuine multipartite entanglement as the indicator of quantum phase transition in spin systems

In this paper, the genuine multipartite entanglement (GME) and quantum criticality property of spin systems with staggered Dzyaloshinskii–Moriya (DM) interaction are investigated by exploiting quantum renormalization group method. The results show that the GME can indicate quantum phase transitions at critical points after several iterations of the renormalization. Moreover, the DM interaction effectively restores the spoiled GME via creation of quantum fluctuations, while it also changes the critical points. At last, the nonanalytic and scaling behaviors of GME are analyzed in detail.

[1]  R. Jafari,et al.  Dzyaloshinskii-Moriya interaction and anisotropy effects on the entanglement of the Heisenberg model , 2009, 0903.0630.

[2]  T. Hänsch,et al.  Controlled collisions for multi-particle entanglement of optically trapped atoms , 2003, Nature.

[3]  Shao-Ming Fei,et al.  A lower bound of concurrence for multipartite quantum states , 2009, 0903.3145.

[4]  Liu Ye,et al.  Exploring the renormalization of quantum discord and Bell non-locality in the one-dimensional transverse Ising model , 2016, Quantum Inf. Process..

[5]  A. Osterloh,et al.  Scaling of entanglement close to a quantum phase transition , 2002, Nature.

[6]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[7]  G. Vidal,et al.  Entanglement in quantum critical phenomena. , 2002, Physical review letters.

[8]  Dong Wang,et al.  Exploring the global entanglement and quantum phase transition in the spin 1/2 XXZ model with Dzyaloshinskii–Moriya interaction , 2015, Quantum Information Processing.

[9]  M. Siahatgar,et al.  Phase diagram and entanglement of the Ising model with Dzyaloshinskii-Moriya interaction , 2008, 0804.4579.

[10]  Hang Ren,et al.  Quantum teleportation and dense coding via topological basis , 2013, Quantum Inf. Process..

[11]  Eduardo Miranda,et al.  Multipartite entanglement signature of quantum phase transitions. , 2006, Physical review letters.

[12]  J I Cirac,et al.  Renormalization-group transformations on quantum states. , 2004, Physical review letters.

[13]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[14]  S. Sachdev Quantum Phase Transitions , 1999 .

[15]  N. Goldenfeld Lectures On Phase Transitions And The Renormalization Group , 1972 .

[16]  A. Langari PHASE DIAGRAM OF THE ANTIFERROMAGNETIC XXZ MODEL IN THE PRESENCE OF AN EXTERNAL MAGNETIC FIELD , 1998, cond-mat/9805024.

[17]  Christoph Becher,et al.  Control and Measurement of Three-Qubit Entangled States , 2004, Science.

[18]  A. Osterloh,et al.  Dynamics of entanglement in one-dimensional spin systems (24 pages) , 2003, quant-ph/0307048.

[19]  G. Rigolin,et al.  Quantum correlations in spin chains at finite temperatures and quantum phase transitions. , 2010, Physical review letters.

[20]  G. Rigolin,et al.  Symmetry-breaking effects upon bipartite and multipartite entanglement in the XY model , 2007, 0709.1956.

[21]  J. Vidal,et al.  Entanglement in a second-order quantum phase transition (4 pages) , 2004 .

[22]  Ming Li,et al.  A lower bound of concurrence for multipartite quantum systems , 2017, Quantum Information Processing.

[23]  R. Jafari,et al.  Phase diagram of the one-dimensional S=(1)/(2) XXZ model with ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor interactions , 2007, 0710.3239.

[24]  W. Cheng,et al.  Fidelity susceptibility approach to quantum phase transitions in the XY spin chain with multisite interactions , 2010 .

[25]  M. Kus,et al.  Concurrence of mixed multipartite quantum States. , 2004, Physical review letters.

[26]  L. Ye,et al.  Quantum correlations and quantum phase transition in the Ising model with Dzyaloshinskii–Moriya interaction , 2014 .

[27]  Andreas Buchleitner,et al.  Decoherence and multipartite entanglement. , 2004, Physical review letters.

[28]  Fu-Wu Ma,et al.  Entanglement and quantum phase transition in the one-dimensional anisotropic XY model , 2011, 1105.1671.

[29]  Thiago R. de Oliveira,et al.  Bell inequalities and entanglement at quantum phase transitions in theXXZmodel , 2012 .

[30]  Neill Lambert,et al.  Entanglement and the phase transition in single-mode superradiance. , 2004, Physical review letters.

[31]  Gustavo Rigolin,et al.  Spotlighting quantum critical points via quantum correlations at finite temperatures , 2011 .

[32]  Gustavo Rigolin,et al.  Genuine Multipartite Entanglement in Quantum Phase Transitions , 2005, quant-ph/0507253.

[33]  Liu Yanchao,et al.  Thermal quantum and classical correlations and entanglement in the XY spin model with three-spin interaction , 2011 .