Empirical likelihood confidence intervals for complex sampling designs

We define an empirical likelihood approach which gives consistent design-based confidence intervals which can be calculated without the need of variance estimates, design effects, resampling, joint inclusion probabilities and linearization, even when the point estimator is not linear. It can be used to construct confidence intervals for a large class of sampling designs and estimators which are solutions of estimating equations. It can be used for means, regressions coefficients, quantiles, totals or counts even when the population size is unknown. It can be used with large sampling fractions and naturally includes calibration constraints. It can be viewed as an extension of the empirical likelihood approach to complex survey data. This approach is computationally simpler than the pseudoempirical likelihood and the bootstrap approaches. The simulation study shows that the confidence interval proposed may give better coverages than the confidence intervals based on linearization, bootstrap and pseudoempirical likelihood. Our simulation study shows that, under complex sampling designs, standard confidence intervals based on normality may have poor coverages, because point estimators may not follow a normal sampling distribution and their variance estimators may be biased.

[1]  W. Fuller,et al.  Quantile Estimation with a Complex Survey Design , 1991 .

[2]  C. T. Isaki,et al.  Survey Design under the Regression Superpopulation Model , 1982 .

[3]  Sanjay Chaudhuri,et al.  Generalized linear models incorporating population level information: an empirical‐likelihood‐based approach , 2008, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[4]  V. P. Godambe A New Approach to Sampling from Finite Populations. I Sufficiency and Linear Estimation , 1966 .

[5]  E. Huang Nonnegative regression estimation for sample survey data , 1978 .

[6]  Mary E. Thompson,et al.  Empirical Likelihood Methods , 2009 .

[7]  M. Sampford,et al.  On sampling without replacement with unequal probabilities of selection. , 1967, Biometrika.

[8]  Randy R. Sitter,et al.  A PSEUDO EMPIRICAL LIKELIHOOD APPROACH TO THE EFFECTIVE USE OF AUXILIARY INFORMATION IN COMPLEX SURVEYS , 1999 .

[9]  W. G. Cochran,et al.  ON A SIMPLE PROCEDURE OF UNEQUAL PROBABILITY SAMPLING WITHOUT REPLACEMENT , 1962 .

[10]  Jiahua Chen,et al.  Empirical likelihood estimation for ?nite populations and the e?ective usage of auxiliary informatio , 1993 .

[11]  M. Chao A general purpose unequal probability sampling plan , 1982 .

[12]  Jae Kwang Kim,et al.  Population empirical likelihood for nonparametric inference in survey sampling , 2014 .

[13]  Changbao Wu The Efiective Use of Complete Auxiliary Information From Survey Data , 2004 .

[14]  V. P. Godambe A New Approach to Sampling from Finite Populations. II Distribution‐Free Sufficiency , 1966 .

[15]  V. P. Godambe,et al.  Estimating Functions and Survey Sampling , 2009 .

[16]  J. Rao,et al.  EMPIRICAL LIKELIHOOD INFERENCE UNDER STRATIFIED RANDOM SAMPLING USING AUXILIARY INFORMATION , 2002 .

[17]  J. Deville,et al.  Efficient balanced sampling: The cube method , 2004 .

[18]  J. Lawless,et al.  Empirical Likelihood and General Estimating Equations , 1994 .

[19]  S. S. Wilks Shortest Average Confidence Intervals from Large Samples , 1938 .

[20]  Pierre Duchesne,et al.  On Calibration Estimation for Quantiles , 2006 .

[21]  Omar Torres Empirical likelihood confidence intervals for survey data , 2014 .

[22]  Yves G. Berger,et al.  Rate of convergence to normal distribution for the Horvitz-Thompson estimator , 1998 .

[23]  C. Särndal,et al.  Calibration Estimators in Survey Sampling , 1992 .

[24]  Wayne A. Fuller,et al.  Some design properties of a rejective sampling procedure , 2009 .

[25]  J. Shao,et al.  The jackknife and bootstrap , 1996 .

[26]  H. O. Hartley,et al.  A new estimation theory for sample surveys , 1968 .

[27]  V. P. Godambe An Optimum Property of Regular Maximum Likelihood Estimation , 1960 .

[28]  D. Horvitz,et al.  A Generalization of Sampling Without Replacement from a Finite Universe , 1952 .

[29]  J. N. K. Rao,et al.  Pseudo‐empirical likelihood ratio confidence intervals for complex surveys , 2006 .

[30]  J. Durbin Some Results in Sampling Theory When the Units are Selected with Unequal Probabilities , 1953 .

[31]  Nibia Aires Comparisons between conditional Poisson sampling and Pareto πps sampling designs , 2000 .

[32]  J. Deville Variance estimation for complex statistics and estimators: Linearization and residual techniques , 2009 .

[33]  J. N. K. Rao,et al.  Empirical likelihood inference under stratified random sampling using auxiliary population information , 2000 .

[34]  Carl-Erik Särndal,et al.  Model Assisted Survey Sampling , 1997 .

[35]  D. Binder On the variances of asymptotically normal estimators from complex surveys , 1983 .

[36]  H. Hartley,et al.  Sampling with Unequal Probabilities and without Replacement , 1962 .

[37]  J. Rao,et al.  Inference From Stratified Samples: Properties of the Linearization, Jackknife and Balanced Repeated Replication Methods , 1981 .

[38]  Muhammad HanifI,et al.  Sampling with Unequal Probabilities without Replacement: A Review , 1980 .

[39]  J. A. Vísek Asymptotic Distribution of Simple Estimate for Rejective, Sampford and Successive Sampling , 1979 .

[40]  J. Shao,et al.  Variance Estimation for Survey Data with Composite Imputation and Nonnegligible Sampling Fractions , 1999 .

[41]  Y. Berger Empirical Likelihood Confidence Intervals under the Rao-Hartley-Cochran Sampling Design , 2014 .

[42]  R. Woodruff,et al.  Confidence Intervals for Medians and Other Position Measures , 1952 .

[43]  Geoffrey Gregory,et al.  Foundations of Statistical Inference , 1973 .

[44]  Y. Berger,et al.  Empirical likelihood confidence intervals and significance test for regression parameters under complex sampling designs , 2014 .

[45]  A. Owen Empirical likelihood ratio confidence intervals for a single functional , 1988 .

[46]  J. Hájek Asymptotic Theory of Rejective Sampling with Varying Probabilities from a Finite Population , 1964 .

[47]  J. Rao,et al.  A NEW ESTIMATION THEORY FOR SAMPLE SURVEYS , 2013 .

[48]  M. H. Hansen,et al.  On the Theory of Sampling from Finite Populations , 1943 .

[49]  Y. Berger Asymptotic consistency under large entropy sampling designs with unequal probabilities , 2011 .

[50]  Art B. Owen,et al.  Empirical Likelihood for Linear Models , 1991 .

[51]  Wu Using empirical likelihood methods to obtain range restricted weights in regression estimators for surveys , 2002 .

[52]  Chris J. Skinner,et al.  Sampling from a Finite Population , 1982 .

[53]  Yves Tillé,et al.  A Direct Bootstrap Method for Complex Sampling Designs From a Finite Population , 2011 .

[54]  Changbao Wu,et al.  ESTIMATION OF DISTRIBUTION FUNCTION AND QUANTILES USING THE MODEL-CALIBRATED PSEUDO EMPIRICAL LIKELIHOOD METHOD , 2002 .

[55]  Yves Tillé,et al.  Towards optimal regression estimation in sample surveys , 2003 .

[56]  Alastair Scott,et al.  On the Asymptotic Distribution of Ratio and Regression Estimators , 1981 .

[57]  Yves Tillé,et al.  Variance approximation under balanced sampling , 2005 .

[58]  Jae Kwang Kim Calibration estimation using empirical likelihood in survey sampling , 2009 .

[59]  Yves Tillé,et al.  Variance Estimation Using Linearization for Poverty and Social Exclusion Indicators , 2014 .