Cumulative physical uncertainty in modern stellar models - I. The case of low-mass stars

Context. Theoretical stellar evolutionary models are still affected by not negligible uncertainties due to the errors in th e adopted physical inputs. Aims. In this paper, using our updated stellar evolutionary code, we quantitatively evaluate the effects of the uncertainties in the main physical inputs on the evolutionary characteristics of low mass stars, and thus of old stellar clusters, from the main sequence to the zero age horizontal branch (ZAHB). To this aim we calculated more than 3000 stellar tracks and isochrones, with updated solar mixture, by changing the following physical inputs within their current range of uncertainty: 1 H(p,�e + ) 2 H, 14 N(p, ) 15 O, and triple-�reaction rates, radiative and conductive opacities, neutr ino energy losses, and microscopic diffusion velocities. Methods. The analysis was conducted performing a systematic variation on a fixed grid, in a way to obtain a full crossing of the perturbed input values. The effect of the variations of the chosen physical inputs on releva nt stellar evolutionary features, such as the turn-off luminosity, the central hydrogen exhaustion time, the red-giant branch tip luminosity, the helium core mass, and the ZAHB luminosity in the RR Lyrae region are analyzed in a statistical way. Results. We find that, for a 0.9 M⊙ model, the cumulative uncertainty on the turn-off, the red-giant branch tip, and the ZAHB luminosities accounts for±0.02 dex,±0.03 dex, and±0.045 dex respectively, while the central hydrogen exhaustion time varies of about±0.7 Gyr. For all examined features the most relevant effect is due to the radiative opacities uncertainty; for the la ter evolutionary stages the second most important effect is due to the triple-� reaction rate uncertainty. For an isochrone of 12 Gyr, we find that the isochrone turn-off log luminosity varies of±0.013 dex, the mass at the isochrone turn-off varies of±0.015 M⊙, and the difference between ZAHB and turn-off log-luminosity varies of±0.05 dex. The effect of the physical uncertainty affecting the age inferred from turn-off luminosity and from the vertical method are of± 0.375 Gyr and± 1.25 Gyr respectively.

[1]  B. Gibson,et al.  The Cosmic Production of Helium , 2003, Science.

[2]  H. Hayashi,et al.  Neutrino Energy Loss in Stellar Interiors. VII. Pair, Photo-, Plasma, Bremsstrahlung, and Recombination Neutrino Processes , 1996 .

[3]  Lawrence M. Krauss,et al.  Age Estimates of Globular Clusters in the Milky Way: Constraints on Cosmology , 2003, Science.

[4]  W. Hubbard,et al.  THERMAL CONDUCTION BY ELECTRONS IN STELLAR MATTER. , 1969 .

[5]  B. Chaboyer,et al.  Theoretical Uncertainties in Red Giant Branch Evolution: The Red Giant Branch Bump , 2003, astro-ph/0512508.

[6]  The Age of Globular Clusters in Light of Hipparcos: Resolving the Age Problem? , 1997, astro-ph/9706128.

[7]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[8]  Influence of two updated nuclear reaction rates on the evolution of low and intermediate mass stars , 2005, astro-ph/0503408.

[9]  B.E.J. PagelL. Portinari Δ Y/Δ Z from fine structure in the main sequence based on Hipparcos parallaxes , 1997, astro-ph/9711332.

[10]  M. Peimbert,et al.  Revised Primordial Helium Abundance Based on New Atomic Data , 2007, astro-ph/0701580.

[11]  V. Castellani,et al.  Nuclear burning rates and Population II stellar models , 1998, astro-ph/9801318.

[12]  The Isolde Collaboration,et al.  Revised rates for the stellar triple-α process from measurement of 12C nuclear resonances , 2005, Nature.

[13]  Theoretical Uncertainties in the Subgiant Mass-Age Relation and the Absolute Age of ω Centauri , 2002, astro-ph/0201443.

[14]  P. Moroni,et al.  White Dwarf cooling Sequences, II: luminosity functions , 2007, astro-ph/0702405.

[15]  V. Castellani,et al.  Calibrated stellar models for metal-poor populations , 2004, astro-ph/0405101.

[16]  A. Weiss,et al.  Standard and Nonstandard Plasma Neutrino Emission Revisited , 1994 .

[17]  Forrest J. Rogers,et al.  Opal equation-of-state tables for astrophysical applications , 1996 .

[18]  C. J. Zeippen,et al.  Updated opacities from the Opacity Project , 2004, astro-ph/0410744.

[19]  The bottleneck of CNO burning and the age of Globular Clusters , 2004, astro-ph/0403071.

[20]  E. Baron,et al.  The ACS Survey of Galactic Globular Clusters. II. Stellar Evolution Tracks, Isochrones, Luminosity Functions, and Synthetic Horizontal-Branch Models , 2007, 0706.0847.

[21]  John N. Bahcall,et al.  Element Diffusion in the Solar Interior , 1992 .

[22]  N. Badnell,et al.  A comparison of Rosseland-mean opacities from OP and OPAL , 2004, astro-ph/0404437.

[23]  L. Krauss,et al.  An accurate relative age estimator for globular clusters , 1996 .

[24]  Solar neutrino constraints on the BBN production of Li , 2003, astro-ph/0312629.

[25]  M. Lampe TRANSPORT COEFFICIENTS OF DEGENERATE PLASMA. , 1967 .

[26]  M. Marconi,et al.  The FRANEC stellar evolutionary code , 2008 .

[27]  C. Flynn Cosmic Helium Production , 2004, Publications of the Astronomical Society of Australia.

[28]  G. Goldring,et al.  Solar fusion cross sections , 1998 .

[29]  G. Steigman PRIMORDIAL NUCLEOSYNTHESIS: SUCCESSES AND CHALLENGES , 2005, astro-ph/0511534.

[30]  C. Rossi-Alvarez,et al.  S-factor of 14N(p,γ)15O at astrophysical energies⋆ , 2005, nucl-ex/0509005.

[31]  A. Weiss,et al.  An updated theoretical scenario for globular cluster stars , 1997, astro-ph/9707180.

[32]  S. Cassisi,et al.  Updated Electron-Conduction Opacities: The Impact on Low-Mass Stellar Models , 2007 .

[33]  L. Girardi,et al.  Scaled solar tracks and isochrones in a large region of the Z-Y plane. II. From 2.5 to 20 solar masses , 2009, 0911.2419.

[34]  S. Rose,et al.  The radiative opacity at the Sun centre—a code comparison study , 2001 .

[35]  S. Degl'Innocenti,et al.  The Pisa Stellar Evolution Data Base for low-mass stars , 2012, 1202.4864.

[36]  A. B. Balantekin,et al.  Solar fusion cross sections II: the pp chain and CNO cycles , 2010, 1004.2318.

[37]  David R. Alexander,et al.  Low-Temperature Opacities , 2005, astro-ph/0502045.

[38]  F. Terrasi,et al.  The 12C(α, γ)16O Reaction Rate and the Evolution of Stars in the Mass Range 0.8 ≤ M/M☉ ≤ 25 , 2001, astro-ph/0107172.

[39]  S. Degl'Innocenti,et al.  The Pisa pre-main sequence tracks and isochrones - A database covering a wide range of Z, Y, mass, and age values , 2011, 1107.2318.

[40]  Forrest J. Rogers,et al.  Updated and Expanded OPAL Equation-of-State Tables: Implications for Helioseismology , 2002 .

[41]  S. Cassisi,et al.  Red Giant Branch Stars: The Theoretical Framework , 2002, astro-ph/0201387.

[42]  P. Aguer,et al.  A compilation of charged-particle induced thermonuclear reaction rates , 1999 .

[43]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[44]  M. Marconi,et al.  Uncertainties on the theoretical predictions for classical Cepheid pulsational quantities , 2009, 0911.2840.

[45]  M. Stein Large sample properties of simulations using latin hypercube sampling , 1987 .

[46]  S. Cassisi,et al.  A Large Stellar Evolution Database for Population Synthesis Studies. II. Stellar Models and Isochrones for an α-enhanced Metal Distribution , 2006 .

[47]  P. Moroni,et al.  Calibration of White Dwarf Cooling Sequences: Theoretical Uncertainty , 2002, astro-ph/0209045.