Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS

Gain-of-function mutations in the Cu,Zn-superoxide dismutase (SOD1) gene are implicated in progressive motor neuron death and paralysis in one form of inherited amyotrophic lateral sclerosis (ALS). At present, transgenic expression of 12 human SOD1 mutations driven by the endogenous promoter is disease-causative and uniformly lethal in mice and rats, despite tremendous biochemical and biophysical variation between the mutants tested. This contrasts with the subclinical motor neuron disease phenotypes of wild-type SOD1 transgenic and knockout mice. Molecular mechanisms such as glutamate-induced excitotoxicity, axonal transport blockade, mitochondrial dysfunction, neuroinflammation and apoptosis triggered by mutant SOD1 catalysed oxidative reactions and/or protein misfolding are proposed to drive ALS pathogenesis. Around 100 genetic cross-breeding experiments with transgenic mutant SOD1 mice have been performed to verify these mechanisms in vivo. Furthermore, mounting evidence from mice with cell restrictive, repressible or chimeric expression of mutant SOD1 transgenes and bone marrow transplants supports non-neuronal origins of neuroprotection in ALS. Transgenic mutant SOD1 rodents have also provided the benchmark preclinical tool for evaluation of over 150 potential therapeutic anti-oxidant, anti-aggregation, anti-glutamatergic, anti-inflammatory, anti-apoptotic and neurotrophic pharmacological agents. Recent promising findings from gene and antisense therapies, cell replacement and combinatorial drug approaches in transgenic mutant SOD1 rodents are also emerging, but await successful translation in patients. This review summarises the wealth of known genetic and therapeutic modifiers in rodent models with SOD1 mutations and discusses these in the wider context of ALS pathoetiology and treatment.

[1]  Q. Zhu,et al.  Absence of neurofilaments reduces the selective vulnerability of motor neurons and slows disease caused by a familial amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutant. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[2]  S. Cheema,et al.  A potential role for the p75 low-affinity neurotrophin receptor in spinal motor neuron degeneration in murine and human amyotrophic lateral sclerosis. , 2001, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[3]  D. Borchelt Amyotrophic lateral sclerosis--are microglia killing motor neurons? , 2006, The New England journal of medicine.

[4]  L. Donehower,et al.  Absence of p53: No Effect in a Transgenic Mouse Model of Familial Amyotrophic Lateral Sclerosis , 2000, Experimental Neurology.

[5]  M. Beal,et al.  Additive neuroprotective effects of a histone deacetylase inhibitor and a catalytic antioxidant in a transgenic mouse model of amyotrophic lateral sclerosis , 2006, Neurobiology of Disease.

[6]  M. Beal,et al.  Iron porphyrin treatment extends survival in a transgenic animal model of amyotrophic lateral sclerosis , 2003, Journal of neurochemistry.

[7]  I. Nishimoto,et al.  Colivelin prolongs survival of an ALS model mouse. , 2006, Biochemical and biophysical research communications.

[8]  M. Benatar Lost in translation: Treatment trials in the SOD1 mouse and in human ALS , 2007, Neurobiology of Disease.

[9]  D. Schoenfeld,et al.  Effect of neurophilin ligands on motor units in mice with SOD1 ALS mutations , 2001, Neurology.

[10]  M. Gurney,et al.  Age-Dependent Penetrance of Disease in a Transgenic Mouse Model of Familial Amyotrophic Lateral Sclerosis , 1995, Molecular and Cellular Neuroscience.

[11]  J. Rothstein,et al.  Loss of the astrocyte glutamate transporter GLT1 modifies disease in SOD1G93A mice , 2006, Experimental Neurology.

[12]  Guy A Rouleau,et al.  Genetics of familial and sporadic amyotrophic lateral sclerosis. , 2006, Biochimica et biophysica acta.

[13]  C. Masters,et al.  Overexpression of Aβ is associated with acceleration of onset of motor impairment and superoxide dismutase 1 aggregation in an amyotrophic lateral sclerosis mouse model , 2006, Aging cell.

[14]  A. Salminen,et al.  Pyrrolidine Dithiocarbamate Inhibits Induction of Immunoproteasome and Decreases Survival in a Rat Model of Amyotrophic Lateral Sclerosis , 2007, Molecular Pharmacology.

[15]  R. Bronson,et al.  Reduced Fertility in Female Mice Lacking Copper-Zinc Superoxide Dismutase* , 1998, The Journal of Biological Chemistry.

[16]  Robert H. Brown,et al.  Caspase-3 Cleaves and Inactivates the Glutamate Transporter EAAT2* , 2006, Journal of Biological Chemistry.

[17]  A. Hottinger,et al.  Increased motoneuron survival and improved neuromuscular function in transgenic ALS mice after intraspinal injection of an adeno-associated virus encoding Bcl-2. , 2000, Human molecular genetics.

[18]  A. Paterson,et al.  Multiple Superoxide Dismutase 1/Splicing Factor Serine Alanine 15 Variants Are Associated With the Development and Progression of Diabetic Nephropathy , 2008, Diabetes.

[19]  B. Seilheimer,et al.  Glutamate AMPA receptors change in motor neurons of SOD1G93A transgenic mice and their inhibition by a noncompetitive antagonist ameliorates the progression of amytrophic lateral sclerosis‐like disease , 2006, Journal of neuroscience research.

[20]  Jean-Pierre Julien,et al.  Efficient three‐drug cocktail for disease induced by mutant superoxide dismutase , 2003, Annals of neurology.

[21]  Geoffrey Burnstock,et al.  Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice , 2004, Nature Medicine.

[22]  D. Borchelt,et al.  Superoxide Dismutase 1 Subunits with Mutations Linked to Familial Amyotrophic Lateral Sclerosis Do Not Affect Wild-type Subunit Function (*) , 1995, The Journal of Biological Chemistry.

[23]  Dong-Kug Choi,et al.  Thalidomide and Lenalidomide Extend Survival in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis , 2006, The Journal of Neuroscience.

[24]  M. Beal,et al.  Elevated “Hydroxyl Radical” Generation In Vivo in an Animal Model of Amyotrophic Lateral Sclerosis , 1998, Journal of neurochemistry.

[25]  R. Oppenheim,et al.  Complete Dissociation of Motor Neuron Death from Motor Dysfunction by Bax Deletion in a Mouse Model of ALS , 2006, The Journal of Neuroscience.

[26]  M. Beal,et al.  Additive neuroprotective effects of creatine and cyclooxygenase 2 inhibitors in a transgenic mouse model of amyotrophic lateral sclerosis , 2003, Journal of neurochemistry.

[27]  K. Nakashima,et al.  Mouse motor neuron disease caused by truncated SOD1 with or without C-terminal modification. , 2005, Brain research. Molecular brain research.

[28]  A. Kulkarni,et al.  Mutant superoxide dismutase 1 causes motor neuron degeneration independent of cyclin‐dependent kinase 5 activation by p35 or p25 , 2004, Journal of neurochemistry.

[29]  R. Heumann,et al.  Immunosuppressant FK506 does not exert beneficial effects in symptomatic G93A superoxide dismutase-1 transgenic mice , 2001, Neuroreport.

[30]  B. Fadeel,et al.  Vascular endothelial growth factor prolongs survival in a transgenic mouse model of ALS , 2004, Annals of neurology.

[31]  A. Sik,et al.  Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis , 2006, Nature Neuroscience.

[32]  S. Browne,et al.  Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[33]  K. Csiszȧr,et al.  Life span extension and reduced neuronal death after weekly intraventricular cyclosporin injections in the G93A transgenic mouse model of amyotrophic lateral sclerosis. , 2004, Journal of neurosurgery.

[34]  S. Cheema,et al.  Antisense peptide nucleic acid‐mediated knockdown of the p75 neurotrophin receptor delays motor neuron disease in mutant SOD1 transgenic mice , 2003, Journal of neurochemistry.

[35]  Jm Charcot,et al.  Deux cas d’atrophie musculaire progressive avec lesions de la substance grise et des faisceaux antero-lateraux de la moelle epiniere , 1869 .

[36]  G. Curran,et al.  Therapeutic benefit of polyamine‐modified catalase as a scavenger of hydrogen peroxide and nitric oxide in familial amyotrophic lateral sclerosis transgenics , 2000, Annals of neurology.

[37]  Youngchul Kim,et al.  Inhibition of glycogen synthase kinase-3 suppresses the onset of symptoms and disease progression of G93A-SOD1 mouse model of ALS , 2007, Experimental Neurology.

[38]  M. Marikovsky,et al.  Cu/Zn Superoxide Dismutase Plays Important Role in Immune Response1 , 2003, The Journal of Immunology.

[39]  C. Epstein,et al.  Overexpression of copper/zinc superoxide dismutase: A novel cause of murine muscular dystrophy , 1998, Annals of neurology.

[40]  J. Turnbull,et al.  A Study of the Purine Derivative AIT-082 in G93A SOD1 Transgenic Mice , 2006, International journal of immunopathology and pharmacology.

[41]  N. Gonatas,et al.  Effect of ubiquitin expression on neuropathogenesis in a mouse model of familial amyotrophic lateral sclerosis , 2005, Neuropathology and applied neurobiology.

[42]  U. Krishnan,et al.  Disease Progression in a Transgenic Model of Familial Amyotrophic Lateral Sclerosis Is Dependent on Both Neuronal and Non-Neuronal Zinc Binding Proteins , 2002, The Journal of Neuroscience.

[43]  S. Itohara,et al.  The crucial role of caspase‐9 in the disease progression of a transgenic ALS mouse model , 2003, The EMBO journal.

[44]  H. Scheich,et al.  Age-dependent changes in MRI of motor brain stem nuclei in a mouse model of ALS , 2004, Neuroreport.

[45]  Zuoshang Xu,et al.  ALS-associated mutant SOD1G93A causes mitochondrial vacuolation by expansion of the intermembrane space and by involvement of SOD1 aggregation and peroxisomes , 2003, BMC Neuroscience.

[46]  Orla Hardiman,et al.  “True” sporadic ALS associated with a novel SOD‐1 mutation , 2002, Annals of neurology.

[47]  J. Powell,et al.  D90A‐SOD1 mediated amyotrophic lateral sclerosis: A single founder for all cases with evidence for a Cis‐acting disease modifier in the recessive haplotype , 2002, Human mutation.

[48]  G. Ghadge,et al.  Truncated wild-type SOD1 and FALS-linked mutant SOD1 cause neural cell death in the chick embryo spinal cord , 2006, Neurobiology of Disease.

[49]  S. Rafii,et al.  Matrix metalloproteinase-9 regulates TNF-alpha and FasL expression in neuronal, glial cells and its absence extends life in a transgenic mouse model of amyotrophic lateral sclerosis. , 2007, Experimental neurology.

[50]  H. Hartung,et al.  Limited effects of glatiramer acetate in the high-copy number hSOD1-G93A mouse model of ALS , 2007, Experimental Neurology.

[51]  P. Carmeliet,et al.  Effects of vascular endothelial growth factor (VEGF) on motor neuron degeneration , 2004, Neurobiology of Disease.

[52]  G. Sobue,et al.  Anticipation in familial amyotrophic lateral sclerosis with SOD1-G93S mutation , 2002, Journal of neurology, neurosurgery, and psychiatry.

[53]  W. Robberecht,et al.  Minocycline delays disease onset and mortality in a transgenic model of ALS , 2002, Neuroreport.

[54]  A. Hill,et al.  Impaired Extracellular Secretion of Mutant Superoxide Dismutase 1 Associates with Neurotoxicity in Familial Amyotrophic Lateral Sclerosis , 2005, The Journal of Neuroscience.

[55]  H. Mizusawa,et al.  Increase of disease duration of amyotrophic lateral sclerosis in a mouse model by transgenic small interfering RNA. , 2007, Archives of neurology.

[56]  Jeffrey Rosenfeld,et al.  Sertoli cells improve survival of motor neurons in SOD1 transgenic mice, a model of amyotrophic lateral sclerosis , 2005, Experimental Neurology.

[57]  Dongxian Zhang,et al.  Memantine prolongs survival in an amyotrophic lateral sclerosis mouse model , 2005, The European journal of neuroscience.

[58]  M. Tarnopolsky,et al.  Caloric restriction transiently improves motor performance but hastens clinical onset of disease in the Cu/Zn‐superoxide dismutase mutant G93A mouse , 2005, Muscle & nerve.

[59]  Shen,et al.  Carboxyfullerenes as neuroprotective agents. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[60]  M. Gurney,et al.  The Golgi apparatus of spinal cord motor neurons in transgenic mice expressing mutant Cu,Zn superoxide dismutase becomes fragmented in early, preclinical stages of the disease. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[61]  K. Avraham,et al.  Down's syndrome: morphological remodelling and increased complexity in the neuromuscular junction of transgenic CuZn-superoxide dismutase mice , 1991, Journal of neurocytology.

[62]  P. Sanberg,et al.  Intraspinal implantation of hNT neurons into SOD1 mice with apparent motor deficit , 2001, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[63]  R. Ferrante,et al.  Nortriptyline delays disease onset in models of chronic neurodegeneration , 2007, The European journal of neuroscience.

[64]  P. Sanberg,et al.  Multiple transplants of hNT cells into the spinal cord of SOD1 mouse model of familial amyotrophic lateral sclerosis , 2006, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[65]  M. Fernando,et al.  Expression of Vascular Endothelial Growth Factor and Its Receptors in the Central Nervous System in Amyotrophic Lateral Sclerosis , 2006, Journal of neuropathology and experimental neurology.

[66]  M. Gurney,et al.  Riluzole preserves motor function in a transgenic model of familial amyotrophic lateral sclerosis , 1998, Neurology.

[67]  W. Robberecht,et al.  D90A heterozygosity in the SOD1 gene is associated with familial and apparently sporadic amyotrophic lateral sclerosis , 1996, Neurology.

[68]  Thomas C. Südhof,et al.  α-Synuclein Cooperates with CSPα in Preventing Neurodegeneration , 2005, Cell.

[69]  F. Salvi,et al.  Amyotrophic lateral sclerosis with mutation of the Cu/Zn superoxide dismutase gene (SOD1) in a patient with Down syndrome , 2007, Neuromuscular Disorders.

[70]  D. Borchelt,et al.  Somatodendritic accumulation of misfolded SOD1-L126Z in motor neurons mediates degeneration: alphaB-crystallin modulates aggregation. , 2005, Human molecular genetics.

[71]  J. Rothstein,et al.  Selective up-regulation of the glial Na+-dependent glutamate transporter GLT1 by a neuroimmunophilin ligand results in neuroprotection , 2006, Neurobiology of Disease.

[72]  M. Beal,et al.  Celastrol Blocks Neuronal Cell Death and Extends Life in Transgenic Mouse Model of Amyotrophic Lateral Sclerosis , 2006, Neurodegenerative Diseases.

[73]  N. Taniguchi,et al.  Gain in functions of mutant Cu,Zn-superoxide dismutases as a causative factor in familial amyotrophic lateral sclerosis: Less reactive oxidant formation but high spontaneous aggregation and precipitation , 2000, Free radical research.

[74]  S. Cheema,et al.  Neuromuscular accumulation of mutant superoxide dismutase 1 aggregates in a transgenic mouse model of familial amyotrophic lateral sclerosis , 2003, Neuroscience Letters.

[75]  J. Kong,et al.  Overexpression of neurofilament subunit NF-L and NF-H extends survival of a mouse model for amyotrophic lateral sclerosis , 2000, Neuroscience Letters.

[76]  M. Schwab,et al.  The neurite outgrowth inhibitor Nogo‐A promotes denervation in an amyotrophic lateral sclerosis model , 2006, EMBO reports.

[77]  E. Bigio,et al.  Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[78]  C. Klee,et al.  Superoxide dismutase protects calcineurin from inactivation , 1996, Nature.

[79]  E. Yoles,et al.  Therapeutic vaccine for acute and chronic motor neuron diseases: Implications for amyotrophic lateral sclerosis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Ronald C. Petersen,et al.  Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17 , 1998, Nature.

[81]  J. Lotem,et al.  Thymic abnormalities and enhanced apoptosis of thymocytes and bone marrow cells in transgenic mice overexpressing Cu/Zn‐superoxide dismutase: implications for Down syndrome. , 1995, The EMBO journal.

[82]  M. Beal,et al.  Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis , 2005, Experimental Neurology.

[83]  C. K. Bruns Copper, zinc superoxide dismutase and amyotrophic lateral sclerosis , 2006 .

[84]  M. Beal,et al.  Therapeutic efficacy of EGb761 (Gingko biloba extract) in a transgenic mouse model of amyotrophic lateral sclerosis , 2001, Journal of Molecular Neuroscience.

[85]  S. Tsuji,et al.  Familial amyotrophic lateral sclerosis with widespread vacuolation and hyaline inclusions , 1998, Neurology.

[86]  M. Gurney,et al.  Enhanced oxygen radical production in a transgenic mouse model of familial amyotrophic lateral sclerosis , 1998, Annals of neurology.

[87]  Q. Zhu,et al.  Protective effect of neurofilament heavy gene overexpression in motor neuron disease induced by mutant superoxide dismutase. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[88]  M. Dubois‐Dauphin,et al.  Bcl-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. , 1997, Science.

[89]  S. Itohara,et al.  Calcium-permeable AMPA receptors promote misfolding of mutant SOD1 protein and development of amyotrophic lateral sclerosis in a transgenic mouse model. , 2004, Human molecular genetics.

[90]  P. Carmeliet,et al.  VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model , 2004, Nature.

[91]  M. Quarto,et al.  Lack of changes in the PI3K/AKT survival pathway in the spinal cord motor neurons of a mouse model of familial amyotrophic lateral sclerosis , 2007, Molecular and Cellular Neuroscience.

[92]  Rinku Sutradhar,et al.  Multiple SOD1/SFRS15 variants are associated with the development and progression of diabetic nephropathy: The DCCT/EDIC Genetics study , 2007 .

[93]  A. Echaniz-Laguna,et al.  Sodium Valproate Exerts Neuroprotective Effects In Vivo through CREB-Binding Protein-Dependent Mechanisms But Does Not Improve Survival in an Amyotrophic Lateral Sclerosis Mouse Model , 2007, The Journal of Neuroscience.

[94]  Steffen Jung,et al.  Control of microglial neurotoxicity by the fractalkine receptor , 2006, Nature Neuroscience.

[95]  J. Morrison,et al.  Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[96]  C. Donadoni,et al.  Wild-type bone marrow cells ameliorate the phenotype of SOD1-G93A ALS mice and contribute to CNS, heart and skeletal muscle tissues. , 2004, Brain : a journal of neurology.

[97]  W. Snider,et al.  Restricted Expression of G86R Cu/Zn Superoxide Dismutase in Astrocytes Results in Astrocytosis But Does Not Cause Motoneuron Degeneration , 2000, The Journal of Neuroscience.

[98]  P. Boyer,et al.  Overexpression of CCS in G93A-SOD1 mice leads to accelerated neurological deficits with severe mitochondrial pathology , 2007, Proceedings of the National Academy of Sciences.

[99]  L. Kaer,et al.  Assessing the role of immuno-proteasomes in a mouse model of familial ALS , 2007, Experimental Neurology.

[100]  Youngchul Kim,et al.  Recombinant human erythropoietin suppresses symptom onset and progression of G93A‐SOD1 mouse model of ALS by preventing motor neuron death and inflammation , 2007, The European journal of neuroscience.

[101]  G. McKhann,et al.  Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[102]  Maarten Dewil,et al.  Inhibition of p38 mitogen activated protein kinase activation and mutant SOD1G93A-induced motor neuron death , 2007, Neurobiology of Disease.

[103]  A. Ludolph,et al.  Intrathecal application of neuroectodermally converted stem cells into a mouse model of ALS: limited intraparenchymal migration and survival narrows therapeutic effects , 2007, Journal of Neural Transmission.

[104]  L. Austin,et al.  The effect of leukaemia inhibitory factor on SOD1 G93A murine amyotrophic lateral sclerosis. , 2003, Cytokine.

[105]  C. Tohyama,et al.  Stabilization of mutant Cu/Zn superoxide dismutase (SOD1) protein by coexpressed wild SOD1 protein accelerates the disease progression in familial amyotrophic lateral sclerosis mice , 2001, The European journal of neuroscience.

[106]  H. Gendelman,et al.  Therapeutic immunization with a glatiramer acetate derivative does not alter survival in G93A and G37R SOD1 mouse models of familial ALS , 2007, Neurobiology of Disease.

[107]  D. Borchelt,et al.  ALS-Linked SOD1 Mutant G85R Mediates Damage to Astrocytes and Promotes Rapidly Progressive Disease with SOD1-Containing Inclusions , 1997, Neuron.

[108]  Betty Y. S. Kim,et al.  Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice , 2002, Nature.

[109]  J. A. Gruner,et al.  Hindlimb motor neurons require Cu/Zn superoxide dismutase for maintenance of neuromuscular junctions. , 1999, The American journal of pathology.

[110]  H. Wootz,et al.  XIAP decreases caspase-12 cleavage and calpain activity in spinal cord of ALS transgenic mice. , 2006, Experimental cell research.

[111]  Oxana V. Baranova,et al.  The lipophilic metal chelators DP‐109 and DP‐460 are neuroprotective in a transgenic mouse model of amyotrophic lateral sclerosis , 2007, Journal of neurochemistry.

[112]  M. Cudkowicz,et al.  Survival in transgenic ALS mice does not vary with CNS glutathione peroxidase activity , 2002, Neurology.

[113]  Robert H. Brown,et al.  Sixteen novel mutations in the Cu/Zn superoxide dismutase gene in amyotrophic lateral sclerosis: a decade of discoveries, defects and disputes. , 2003, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[114]  H. Fathallah-Shaykh,et al.  Survival in a transgenic model of fals is independent of inos expression , 2001, Annals of neurology.

[115]  M. Gurney,et al.  Benefit of vitamin E, riluzole, and gababapentin in a transgenic model of familial amyotrophic lateral sclerosis , 1996, Annals of neurology.

[116]  Pico Caroni,et al.  Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF , 2006, Nature Neuroscience.

[117]  Junying Yuan,et al.  Inhibition of ICE slows ALS in mice , 1997, Nature.

[118]  S. Przedborski,et al.  Is prostaglandin E2 a pathogenic factor in amyotrophic lateral sclerosis? , 2006 .

[119]  D. Borchelt,et al.  Fibrillar Inclusions and Motor Neuron Degeneration in Transgenic Mice Expressing Superoxide Dismutase 1 with a Disrupted Copper-Binding Site , 2002, Neurobiology of Disease.

[120]  P. Andersen,et al.  Disulphide-reduced superoxide dismutase-1 in CNS of transgenic amyotrophic lateral sclerosis models. , 2006, Brain : a journal of neurology.

[121]  D. Gozal,et al.  Motor Neuron Degeneration Promotes Neural Progenitor Cell Proliferation, Migration, and Neurogenesis in the Spinal Cords of Amyotrophic Lateral Sclerosis Mice , 2006, Stem cells.

[122]  J. Sanes,et al.  A compensatory subpopulation of motor neurons in a mouse model of amyotrophic lateral sclerosis , 2005, The Journal of comparative neurology.

[123]  J. Julien,et al.  Therapeutic effects of immunization with mutant superoxide dismutase in mice models of amyotrophic lateral sclerosis , 2007, Proceedings of the National Academy of Sciences.

[124]  D. Borchelt,et al.  Copper-binding-site-null SOD1 causes ALS in transgenic mice: aggregates of non-native SOD1 delineate a common feature. , 2003, Human molecular genetics.

[125]  L. Barbeito,et al.  CCS knockout mice establish an alternative source of copper for SOD in ALS. , 2002, Free radical biology & medicine.

[126]  D. Price,et al.  Elevated free nitrotyrosine levels, but not protein-bound nitrotyrosine or hydroxyl radicals, throughout amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-linked superoxide dismutase 1 mutant. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[127]  A. Bodner,et al.  Glutamate carboxypeptidase II inhibition protects motor neurons from death in familial amyotrophic lateral sclerosis models , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[128]  S. Rivest,et al.  MyD 88-defi cient bone marrow cells accelerate onset and reduce survival in a mouse model of amyotrophic lateral sclerosis , 2007 .

[129]  M. Baudry,et al.  Synthetic superoxide dismutase/catalase mimetics reduce oxidative stress and prolong survival in a mouse amyotrophic lateral sclerosis model , 2001, Neuroscience Letters.

[130]  R. Vink,et al.  Magnesium supplementation does not delay disease onset or increase survival in a mouse model of familial ALS , 2003, Journal of the Neurological Sciences.

[131]  F. Rossi,et al.  Origin and distribution of bone marrow‐derived cells in the central nervous system in a mouse model of amyotrophic lateral sclerosis , 2006, Glia.

[132]  E. Esposito,et al.  Lyophilized red wine administration prolongs survival in an animal model of amyotrophic lateral sclerosis , 2000, Annals of neurology.

[133]  C. Hetz,et al.  The proapoptotic BCL-2 family member BIM mediates motoneuron loss in a model of amyotrophic lateral sclerosis , 2007, Cell Death and Differentiation.

[134]  J. Veldink,et al.  Zinc amplifies mSOD1-mediated toxicity in a transgenic mouse model of amyotrophic lateral sclerosis , 2003, Neuroscience Letters.

[135]  C. Epstein,et al.  Novel mutations in an otherwise strictly conserved domain of CuZn superoxide dismutase , 1997, Molecular and Cellular Biochemistry.

[136]  Yuxin Fan,et al.  Implications of ALS focality , 2007, Neurology.

[137]  K. Jin,et al.  Vascular Endothelial Growth Factor Overexpression Delays Neurodegeneration and Prolongs Survival in Amyotrophic Lateral Sclerosis Mice , 2007, The Journal of Neuroscience.

[138]  J. Julien,et al.  Absence of Tumor Necrosis Factor-α Does Not Affect Motor Neuron Disease Caused by Superoxide Dismutase 1 Mutations , 2006, The Journal of Neuroscience.

[139]  M. Matzuk,et al.  Ovarian function in superoxide dismutase 1 and 2 knockout mice. , 1998, Endocrinology.

[140]  S. Mckercher,et al.  Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis , 2006, Proceedings of the National Academy of Sciences.

[141]  V. Meininger,et al.  Amyotrophic lateral sclerosis: all roads lead to Rome , 2007, Journal of neurochemistry.

[142]  D. Cleveland,et al.  Altered axonal architecture by removal of the heavily phosphorylated neurofilament tail domains strongly slows superoxide dismutase 1 mutant-mediated ALS. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[143]  H. Horvitz,et al.  Epidemiology of mutations in superoxide dismutase in amyotrophic lateal sclerosis , 1997, Annals of neurology.

[144]  Yoon-Ho Hong,et al.  Pyruvate slows disease progression in a G93A SOD1 mutant transgenic mouse model , 2007, Neuroscience Letters.

[145]  G. Kollias,et al.  Onset and Progression in Inherited ALS Determined by Motor Neurons and Microglia , 2006, Science.

[146]  P. Carmeliet,et al.  VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death , 2003, Nature Genetics.

[147]  C. Epstein,et al.  CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life , 2005, Oncogene.

[148]  L. Martin,et al.  Motor neuron degeneration in amyotrophic lateral sclerosis mutant superoxide dismutase‐1 transgenic mice: Mechanisms of mitochondriopathy and cell death , 2007, The Journal of comparative neurology.

[149]  Wenhua Zhang,et al.  Additive neuroprotective effects of minocycline with creatine in a mouse model of ALS , 2003, Annals of neurology.

[150]  P. Stieg,et al.  Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. , 2000, Science.

[151]  M. Shoji,et al.  Therapeutic benefit of intrathecal injection of insulin-like growth factor-1 in a mouse model of Amyotrophic Lateral Sclerosis , 2005, Journal of the Neurological Sciences.

[152]  H. Cai,et al.  Deficiency in the ALS2 gene does not affect the motor neuron degeneration in SOD1G93A transgenic mice , 2007, Neurobiology of Aging.

[153]  M. Gurney,et al.  Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[154]  H. Schmalbruch,et al.  Protective effects of cardiotrophin-1 adenoviral gene transfer on neuromuscular degeneration in transgenic ALS mice. , 2001, Human molecular genetics.

[155]  J. Valentine,et al.  Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[156]  G. Rotilio,et al.  Cell death in amyotrophic lateral sclerosis: interplay between neuronal and glial cells , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[157]  E. Stadtman,et al.  Copper, zinc superoxide dismutase catalyzes hydroxyl radical production from hydrogen peroxide. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[158]  J. Tainer,et al.  The D90A mutation results in a polymorphism of Cu,Zn superoxide dismutase that is prevalent in northern Sweden and Finland. , 1995, Human molecular genetics.

[159]  A. F. Soleng,et al.  A thorny question: how does activity maintain dendritic spines? , 1999, Nature Neuroscience.

[160]  S. Cheema,et al.  Degeneration of corticospinal and bulbospinal systems in the superoxide dismutase 1G93A G1H transgenic mouse model of familial amyotrophic lateral sclerosis , 2002, Neuroscience Letters.

[161]  O. Elroy-Stein,et al.  Diminished serotonin uptake in platelets of transgenic mice with increased Cu/Zn‐superoxide dismutase activity. , 1989, The EMBO journal.

[162]  I. Fridovich,et al.  Mutant Cu,Zn superoxide dismutases and familial amyotrophic lateral sclerosis: evaluation of oxidative hypotheses. , 2003, Free radical biology & medicine.

[163]  J. Trojanowski,et al.  Neurofilaments and Orthograde Transport Are Reduced in Ventral Root Axons of Transgenic Mice that Express Human SOD1 with a G93A Mutation , 1997, The Journal of cell biology.

[164]  J. Rothstein,et al.  Topiramate protects against motor neuron degeneration in organotypic spinal cord cultures but not in G93A SOD1 transgenic mice , 2003, Neuroscience Letters.

[165]  Y. Itoyama,et al.  Neuroprotective effect of oxidized galectin-1 in a transgenic mouse model of amyotrophic lateral sclerosis , 2005, Experimental Neurology.

[166]  S. Appel,et al.  Parvalbumin overexpression alters immune‐mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis , 2001, Journal of neurochemistry.

[167]  P. Sanberg,et al.  hNT neurons delay onset of motor deficits in a model of amyotrophic lateral sclerosis , 2001, Brain Research Bulletin.

[168]  A. Makriyannis,et al.  AM1241, a cannabinoid CB2 receptor selective compound, delays disease progression in a mouse model of amyotrophic lateral sclerosis. , 2006, European journal of pharmacology.

[169]  J. Trojanowski,et al.  Pathological TDP‐43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations , 2007, Annals of neurology.

[170]  Ole A. Andreassen,et al.  Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis , 1999, Nature Medicine.

[171]  T. Kilpatrick,et al.  Effect of p75 neurotrophin receptor antagonist on disease progression in transgenic amyotrophic lateral sclerosis mice , 2004, Journal of neuroscience research.

[172]  T. Heiman-Patterson,et al.  GLT-1 glutamate transporter levels are unchanged in mice expressing G93A human mutant SOD1 , 2002, Journal of the Neurological Sciences.

[173]  L. Shinobu,et al.  Elevation of the Hsp70 chaperone does not effect toxicity in mouse models of familial amyotrophic lateral sclerosis , 2005, Journal of neurochemistry.

[174]  B. Monia,et al.  Antisense oligonucleotide therapy for neurodegenerative disease. , 2006, The Journal of clinical investigation.

[175]  J. Turnbull,et al.  Beneficial effect of ginseng root in SOD-1 (G93A) transgenic mice , 2000, Journal of the Neurological Sciences.

[176]  M. Pangalos,et al.  Myostatin inhibition slows muscle atrophy in rodent models of amyotrophic lateral sclerosis , 2006, Neurobiology of Disease.

[177]  M. Shoji,et al.  Intrathecal injection of epidermal growth factor and fibroblast growth factor 2 promotes proliferation of neural precursor cells in the spinal cords of mice with mutant human SOD1 gene , 2006, Journal of neuroscience research.

[178]  H. Mizukami,et al.  Neuroprotective Effects of Glial Cell Line-Derived Neurotrophic Factor Mediated by an Adeno-Associated Virus Vector in a Transgenic Animal Model of Amyotrophic Lateral Sclerosis , 2002, The Journal of Neuroscience.

[179]  N. Shibata,et al.  Selective formation of certain advanced glycation end products in spinal cord astrocytes of humans and mice with superoxide dismutase-1 mutation , 2002, Acta Neuropathologica.

[180]  A. Ludolph Matrix metalloproteinases—A conceptional alternative for disease-modifying strategies in ALS/MND? , 2006, Experimental Neurology.

[181]  M. Gurney,et al.  A low expressor line of transgenic mice carrying a mutant human Cu,Zn superoxide dismutase (SOD1) gene develops pathological changes that most closely resemble those in human amyotrophic lateral sclerosis , 1997, Acta Neuropathologica.

[182]  P. Monk,et al.  ALS: life and death in a bad neighborhood , 2006, Nature Medicine.

[183]  I. Bertini,et al.  Metal-free superoxide dismutase forms soluble oligomers under physiological conditions: A possible general mechanism for familial ALS , 2007, Proceedings of the National Academy of Sciences.

[184]  A. Chakrabartty,et al.  Oxidation-induced Misfolding and Aggregation of Superoxide Dismutase and Its Implications for Amyotrophic Lateral Sclerosis* , 2002, The Journal of Biological Chemistry.

[185]  J. Valentine Do oxidatively modified proteins cause ALS? , 2002, Free radical biology & medicine.

[186]  S. Salani,et al.  Neural stem cells LewisX+ CXCR4+ modify disease progression in an amyotrophic lateral sclerosis model. , 2007, Brain : a journal of neurology.

[187]  J. Holstege,et al.  Human Cu/Zn Superoxide Dismutase (SOD1) Overexpression in Mice Causes Mitochondrial Vacuolization, Axonal Degeneration, and Premature Motoneuron Death and Accelerates Motoneuron Disease in Mice Expressing a Familial Amyotrophic Lateral Sclerosis Mutant SOD1 , 2000, Neurobiology of Disease.

[188]  M. Tarnopolsky,et al.  Creatine supplementation and riluzole treatment provide similar beneficial effects in copper, zinc superoxide dismutase (G93A) transgenic mice , 2003, Neuroscience.

[189]  K. Kotulska,et al.  Overexpression of copper/zinc‐superoxide dismutase in transgenic mice markedly impairs regeneration and increases development of neuropathic pain after sciatic nerve injury , 2006, Journal of neuroscience research.

[190]  R. Oppenheim,et al.  The lack of effect of specific overexpression of IGF-1 in the central nervous system or skeletal muscle on pathophysiology in the G93A SOD-1 mouse model of ALS , 2007, Experimental Neurology.

[191]  R. Oppenheim,et al.  Exogenous Delivery of Heat Shock Protein 70 Increases Lifespan in a Mouse Model of Amyotrophic Lateral Sclerosis , 2007, The Journal of Neuroscience.

[192]  T. Siddique,et al.  Restricted expression of mutant SOD1 in spinal motor neurons and interneurons induces motor neuron pathology , 2008, Neurobiology of Disease.

[193]  J. Holstege,et al.  CuZn superoxide dismutase (SOD1) accumulates in vacuolated mitochondria in transgenic mice expressing amyotrophic lateral sclerosis-linked SOD1 mutations , 2001, Acta Neuropathologica.

[194]  J. Holstege,et al.  The antioxidant N‐acetylcysteine does not delay disease onset and death in a transgenic mouse model of amyotrophic lateral sclerosis , 1998, Annals of neurology.

[195]  A. Ludolph,et al.  A dynein mutation attenuates motor neuron degeneration in SOD1G93A mice , 2006, Experimental Neurology.

[196]  L. Greensmith,et al.  A mutation in dynein rescues axonal transport defects and extends the life span of ALS mice , 2005, The Journal of cell biology.

[197]  P. Sanberg,et al.  Positive Effect of Transplantation of hNT Neurons (NTera 2/D1 Cell-Line) in a Model of Familial Amyotrophic Lateral Sclerosis , 2002, Experimental Neurology.

[198]  D. Borchelt,et al.  Caspase-1 is activated in neural cells and tissue with amyotrophic lateral sclerosis-associated mutations in copper-zinc superoxide dismutase. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[199]  J. Rothstein,et al.  Intraparenchymal spinal cord delivery of adeno-associated virus IGF-1 is protective in the SOD1G93A model of ALS , 2007, Brain Research.

[200]  E. Esposito,et al.  Red Wine Extract Prevents Neuronal Apoptosis in Vitro and Reduces Mortality of Transgenic Mice , 2006, Annals of the New York Academy of Sciences.

[201]  James S. Wright,et al.  Targeted Deletion of the Cytosolic Cu/Zn-Superoxide Dismutase Gene (Sod1) Increases Susceptibility to Noise-Induced Hearing Loss , 1999, Audiology and Neurotology.

[202]  S. Marklund,et al.  In vitro photochemical cataract in mice lacking copper-zinc superoxide dismutase. , 2001, Free radical biology & medicine.

[203]  J. Crow,et al.  The CB2 cannabinoid agonist AM‐1241 prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis when initiated at symptom onset , 2006, Journal of neurochemistry.

[204]  H. Schulman,et al.  Neuroprotective effect of activity‐dependent neurotrophic factor against toxicity from familial amyotrophic lateral sclerosis‐linked mutant SOD1 in vitro and in vivo , 2004, Journal of neuroscience research.

[205]  Y. Hattori,et al.  Pyrrolidine dithiocarbamate inhibits cytokine-induced VCAM-1 gene expression in rat cardiac myocytes , 1997, Molecular and Cellular Biochemistry.

[206]  A. Nersissian,et al.  Loss of in Vitro Metal Ion Binding Specificity in Mutant Copper-Zinc Superoxide Dismutases Associated with Familial Amyotrophic Lateral Sclerosis* , 2000, The Journal of Biological Chemistry.

[207]  F. Uckun,et al.  Genistein is neuroprotective in murine models of familial amyotrophic lateral sclerosis and stroke. , 1999, Biochemical and biophysical research communications.

[208]  M. Beal,et al.  Mutated Human SOD1 Causes Dysfunction of Oxidative Phosphorylation in Mitochondria of Transgenic Mice* , 2002, The Journal of Biological Chemistry.

[209]  J. Shin,et al.  Concurrent Administration of Neu2000 and Lithium Produces Marked Improvement of Motor Neuron Survival, Motor Function, and Mortality in a Mouse Model of Amyotrophic Lateral Sclerosis , 2007, Molecular Pharmacology.

[210]  G. Egan,et al.  Magnetic resonance imaging reveals neuronal degeneration in the brainstem of the superoxide dismutase 1G93A G1H transgenic mouse model of amyotrophic lateral sclerosis , 2004 .

[211]  M. Rattray,et al.  Transgenic SOD1 G93A mice develop reduced GLT‐1 in spinal cord without alterations in cerebrospinal fluid glutamate levels , 2001, Journal of neurochemistry.

[212]  A. Pramatarova,et al.  Neuron-Specific Expression of Mutant Superoxide Dismutase 1 in Transgenic Mice Does Not Lead to Motor Impairment , 2001, The Journal of Neuroscience.

[213]  Chang Zhou,et al.  Human mesenchymal stromal cells ameliorate the phenotype of SOD1-G93A ALS mice. , 2007, Cytotherapy.

[214]  B. Müller-Myhsok,et al.  Early onset of severe familial amyotrophic lateral sclerosis with a SOD-1 mutation: potential impact of CNTF as a candidate modifier gene. , 2002, American journal of human genetics.

[215]  Zuoshang Xu,et al.  Mutant Cu, Zn Superoxide Dismutase that Causes Motoneuron Degeneration Is Present in Mitochondria in the CNS , 2002, The Journal of Neuroscience.

[216]  M. Azari,et al.  Behavioural and anatomical effects of systemically administered leukemia inhibitory factor in the SOD1G93A G1H mouse model of familial amyotrophic lateral sclerosis , 2003, Brain Research.

[217]  Zuoshang Xu,et al.  Mitochondrial electron transport chain complex dysfunction in a transgenic mouse model for amyotrophic lateral sclerosis , 2002, Journal of neurochemistry.

[218]  Y. Groner,et al.  Gene dosage of CuZnSOD and Down's syndrome: diminished prostaglandin synthesis in human trisomy 21, transfected cells and transgenic mice. , 1991, The EMBO journal.

[219]  L. Bruijn,et al.  Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. , 1998, Science.

[220]  W. Bradley,et al.  An ALS mouse model with a permeable blood–brain barrier benefits from systemic cyclosporine A treatment , 2004, Journal of neurochemistry.

[221]  L. V. D. Berg,et al.  Ovariectomy and 17beta-estradiol modulate disease progression of a mouse model of ALS. , 2004, Brain research.

[222]  Young Joo Lee,et al.  The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice , 2006, Neuroscience Letters.

[223]  J. Ravits,et al.  Focality of upper and lower motor neuron degeneration at the clinical onset of ALS , 2007, Neurology.

[224]  M. Tarnopolsky,et al.  Effects of high‐intensity endurance exercise training in the G93A mouse model of amyotrophic lateral sclerosis , 2004, Muscle & nerve.

[225]  J S Valentine,et al.  Copper(2+) binding to the surface residue cysteine 111 of His46Arg human copper-zinc superoxide dismutase, a familial amyotrophic lateral sclerosis mutant. , 2000, Biochemistry.

[226]  M. Gurney,et al.  The use of transgenic mouse models of amyotrophic lateral sclerosis in preclinical drug studies , 1997, Journal of the Neurological Sciences.

[227]  M. Beal,et al.  Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury , 1996, Nature Genetics.

[228]  Dan Sapoznikov,et al.  Down's syndrome: Abnormal neuromuscular junction in tongue of transgenic mice with elevated levels of human Cu/Zn-superoxide dismutase , 1988, Cell.

[229]  D. Borchelt,et al.  An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria , 1995, Neuron.

[230]  V. Silani,et al.  Early vacuolization and mitochondrial damage in motor neurons of FALS mice are not associated with apoptosis or with changes in cytochrome oxidase histochemical reactivity , 2001, Journal of the Neurological Sciences.

[231]  S. McAllister,et al.  Amyotrophic lateral sclerosis: delayed disease progression in mice by treatment with a cannabinoid , 2004, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[232]  T. Heiman-Patterson,et al.  Elevated Cortical Extracellular Fluid Glutamate in Transgenic Mice Expressing Human Mutant (G93A) Cu/Zn Superoxide Dismutase , 2000, Journal of neurochemistry.

[233]  P. Andersen,et al.  Amyotrophic Lateral Sclerosis-associated Copper/Zinc Superoxide Dismutase Mutations Preferentially Reduce the Repulsive Charge of the Proteins* , 2007, Journal of Biological Chemistry.

[234]  H. Joh,et al.  A Physiological Role for Saccharomyces cerevisiae Copper/Zinc Superoxide Dismutase in Copper Buffering (*) , 1995, The Journal of Biological Chemistry.

[235]  E. Esposito,et al.  Antioxidant strategies based on tomato-enriched food or pyruvate do not affect disease onset and survival in an animal model of amyotrophic lateral sclerosis , 2007, Brain Research.

[236]  T. Gillingwater,et al.  A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. , 2004, American journal of human genetics.

[237]  E. Ho,et al.  Protection by dietary zinc in ALS mutant G93A SOD transgenic mice , 2005, Neuroscience Letters.

[238]  W. Robberecht,et al.  GluR2 Deficiency Accelerates Motor Neuron Degeneration in a Mouse Model of Amyotrophic Lateral Sclerosis , 2005, Journal of neuropathology and experimental neurology.

[239]  C. Winterbourn,et al.  Thiol Oxidase Activity of Copper,Zinc Superoxide Dismutase* , 2002, The Journal of Biological Chemistry.

[240]  P. Andersen,et al.  Amyotrophic lateral sclerosis associated with homozygosity for an Asp90Ala mutation in CuZn-superoxide dismutase , 1995, Nature Genetics.

[241]  A. Bush Is ALS caused by an altered oxidative activity of mutant superoxide dismutase? , 2002, Nature Neuroscience.

[242]  F. Gage,et al.  Gene transfer demonstrates that muscle is not a primary target for non-cell-autonomous toxicity in familial amyotrophic lateral sclerosis , 2006, Proceedings of the National Academy of Sciences.

[243]  M. Mohajeri,et al.  Intramuscular grafts of myoblasts genetically modified to secrete glial cell line-derived neurotrophic factor prevent motoneuron loss and disease progression in a mouse model of familial amyotrophic lateral sclerosis. , 1999, Human gene therapy.

[244]  J. Shefner,et al.  Mice lacking cytosolic copper/zinc superoxide dismutase display a distinctive motor axonopathy , 1999, Neurology.

[245]  W. Robberecht,et al.  Ivermectin inhibits AMPA receptor-mediated excitotoxicity in cultured motor neurons and extends the life span of a transgenic mouse model of amyotrophic lateral sclerosis , 2007, Neurobiology of Disease.

[246]  Kei Shinoda,et al.  Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[247]  Woong Sun,et al.  Overexpression of HGF Retards Disease Progression and Prolongs Life Span in a Transgenic Mouse Model of ALS , 2002, The Journal of Neuroscience.

[248]  Minh N. H. Nguyen,et al.  Induction of proinflammatory molecules in mice with amyotrophic lateral sclerosis: No requirement for proapoptotic interleukin‐1β in neurodegeneration , 2001, Annals of neurology.

[249]  J. Julien,et al.  Exacerbation of Motor Neuron Disease by Chronic Stimulation of Innate Immunity in a Mouse Model of Amyotrophic Lateral Sclerosis , 2004, The Journal of Neuroscience.

[250]  Nikolay V Dokholyan,et al.  The rate and equilibrium constants for a multistep reaction sequence for the aggregation of superoxide dismutase in amyotrophic lateral sclerosis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[251]  J. Glass,et al.  Axonal Degeneration in Motor Neuron Disease , 2007, Neurodegenerative Diseases.

[252]  L. Rowland,et al.  Amyotrophic Lateral Sclerosis , 1980, Neurology.

[253]  D. Butterfield,et al.  Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice--a model of familial amyotrophic lateral sclerosis. , 2005, Free radical biology & medicine.

[254]  D. Borchelt,et al.  Coincident thresholds of mutant protein for paralytic disease and protein aggregation caused by restrictively expressed superoxide dismutase cDNA , 2005, Neurobiology of Disease.

[255]  W. A. Day,et al.  Transforming growth factor-beta 2 causes an acute improvement in the motor performance of transgenic ALS mice , 2005, Neurobiology of Disease.

[256]  P. Fisher,et al.  β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression , 2005, Nature.

[257]  W. Bradley,et al.  Regular exercise is beneficial to a mouse model of amyotrophic lateral sclerosis , 2003, Annals of neurology.

[258]  M. Lovett,et al.  Transgenic mice with increased Cu/Zn-superoxide dismutase activity: animal model of dosage effects in Down syndrome. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[259]  M. Gurney,et al.  Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS , 1998 .

[260]  O. Andreassen,et al.  Partial deficiency of manganese superoxide dismutase exacerbates a transgenic mouse model of amyotrophic lateral sclerosis , 2000, Annals of neurology.

[261]  A. Parsadanian,et al.  Muscle-derived but not centrally derived transgene GDNF is neuroprotective in G93A-SOD1 mouse model of ALS , 2007, Experimental Neurology.

[262]  S. Sakoda,et al.  The efficacy of trientine or ascorbate alone compared to that of the combined treatment with these two agents in familial amyotrophic lateral sclerosis model mice , 2003, Experimental Neurology.

[263]  Robert H. Brown,et al.  Amyotrophic Lateral Sclerosis-Associated SOD1 Mutant Proteins Bind and Aggregate with Bcl-2 in Spinal Cord Mitochondria , 2004, Neuron.

[264]  W. Robberecht,et al.  Upregulation of HSP27 in a Transgenic Model of ALS , 2002, Journal of neuropathology and experimental neurology.

[265]  D. Gozal,et al.  Increased mitochondrial antioxidative activity or decreased oxygen free radical propagation prevent mutant SOD1‐mediated motor neuron cell death and increase amyotrophic lateral sclerosis‐like transgenic mouse survival , 2002, Journal of neurochemistry.

[266]  M. Gurney,et al.  Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu,Zn SOD, and in mice overexpressing wild type human SOD: a model of familial amyotrophic lateral sclerosis (FALS) , 1995, Brain Research.

[267]  V. Koliatsos,et al.  Combined Immunosuppressive Agents or CD4 Antibodies Prolong Survival of Human Neural Stem Cell Grafts and Improve Disease Outcomes in Amyotrophic Lateral Sclerosis Transgenic Mice , 2006, Stem cells.

[268]  H. Orr A proposed mechanism of ALS fails the test in vivo , 2002, Nature Neuroscience.

[269]  F. Gage,et al.  Synergy of insulin‐like growth factor‐1 and exercise in amyotrophic lateral sclerosis , 2005, Annals of neurology.

[270]  W. Paulus,et al.  Extensive exercise is not harmful in amyotrophic lateral sclerosis , 2004, The European journal of neuroscience.

[271]  M. Gurney,et al.  Protein Oxidative Damage in a Transgenic Mouse Model of Familial Amyotrophic Lateral Sclerosis , 1998, Journal of neurochemistry.

[272]  S. Rivest,et al.  MyD88-deficient bone marrow cells accelerate onset and reduce survival in a mouse model of amyotrophic lateral sclerosis , 2007, The Journal of Cell Biology.

[273]  E. Sato,et al.  l-Carnitine suppresses the onset of neuromuscular degeneration and increases the life span of mice with familial amyotrophic lateral sclerosis , 2006, Brain Research.

[274]  P. Wong,et al.  Pathogenesis of two axonopathies does not require axonal neurofilaments , 1998, Nature.

[275]  Hynek Wichterle,et al.  Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons , 2007, Nature Neuroscience.

[276]  F. Gage,et al.  Retrograde Viral Delivery of IGF-1 Prolongs Survival in a Mouse ALS Model , 2003, Science.

[277]  J. Julien,et al.  Minocycline Slows Disease Progression in a Mouse Model of Amyotrophic Lateral Sclerosis , 2002, Neurobiology of Disease.

[278]  J. Bertram,et al.  Chemotherapy Delays Progression of Motor Neuron Disease in the SOD1 G93A Transgenic Mouse , 2004, Chemotherapy.

[279]  B. Fadeel,et al.  VEGF reduces astrogliosis and preserves neuromuscular junctions in ALS transgenic mice. , 2007, Biochemical and biophysical research communications.

[280]  K. Hensley,et al.  The arachidonic acid 5‐lipoxygenase inhibitor nordihydroguaiaretic acid inhibits tumor necrosis factor α activation of microglia and extends survival of G93A‐SOD1 transgenic mice , 2004, Journal of neurochemistry.

[281]  B. Trapp,et al.  The neuroprotective factor Wlds does not attenuate mutant SOD1-mediated motor neuron disease , 2007, NeuroMolecular Medicine.

[282]  W. Robberecht,et al.  Role of matrix metalloproteinase-9 in a mouse model for amyotrophic lateral sclerosis , 2005, Neuroreport.

[283]  D. Jaarsma Swelling and vacuolisation of mitochondria in transgenic SOD1-ALS mice: a consequence of supranormal SOD1 expression? , 2006, Mitochondrion.

[284]  A. Chiò,et al.  The IVS1 +319 t>a of SOD1 gene is not an ALS causing mutation. , 2004, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[285]  C. Bendotti,et al.  Erythropoietin does not preserve motor neurons in a mouse model of familial ALS , 2007, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[286]  Claire L. Simpson,et al.  Amyotrophic lateral sclerosis as a complex genetic disease. , 2006, Biochimica et biophysica acta.

[287]  S. Lorenzl,et al.  A role for the urokinase-type plasminogen activator system in amyotrophic lateral sclerosis , 2007, Experimental Neurology.

[288]  M. Gurney,et al.  Lack of involvement of neuronal nitric oxide synthase in the pathogenesis of a transgenic mouse model of familial amyotrophic lateral sclerosis , 1999, Neuroscience.

[289]  M. Pericak-Vance,et al.  The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis , 2001, Nature Genetics.

[290]  M. Beal,et al.  Cell‐permeable peptide antioxidants as a novel therapeutic approach in a mouse model of amyotrophic lateral sclerosis , 2006 .

[291]  J. Loeffler,et al.  Evidence for defective energy homeostasis in amyotrophic lateral sclerosis: benefit of a high-energy diet in a transgenic mouse model. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[292]  Hiroshi Nishimune,et al.  Motoneuron Death Triggered by a Specific Pathway Downstream of Fas Potentiation by ALS-Linked SOD1 Mutations , 2002, Neuron.

[293]  P. Andersen Amyotrophic lateral sclerosis associated with mutations in the CuZn superoxide dismutase gene , 2006, Current neurology and neuroscience reports.

[294]  A. Musarò,et al.  Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model , 2005, The Journal of cell biology.

[295]  D. Borchelt,et al.  Variation in the biochemical/biophysical properties of mutant superoxide dismutase 1 enzymes and the rate of disease progression in familial amyotrophic lateral sclerosis kindreds. , 1999, Human molecular genetics.

[296]  E. Mugnaini,et al.  Distal axonopathy in an alsin-deficient mouse model. , 2007, Human molecular genetics.

[297]  A. Ludolph,et al.  Rasagiline alone and in combination with riluzole prolongs survival in an ALS mouse model , 2004, Journal of Neurology.

[298]  M. Beal,et al.  Loss of Fas ligand-function improves survival in G93A-transgenic ALS mice , 2006, Journal of the Neurological Sciences.

[299]  M. Gurney,et al.  The Copper Chelator d‐Penicillamine Delays Onset of Disease and Extends Survival in a Transgenic Mouse Model of Familial Amyotrophic Lateral Sclerosis , 1997, The European journal of neuroscience.

[300]  C. Henderson,et al.  Identification and Characterization of Cholest-4-en-3-one, Oxime (TRO19622), a Novel Drug Candidate for Amyotrophic Lateral Sclerosis , 2007, Journal of Pharmacology and Experimental Therapeutics.

[301]  N. Ende,et al.  The potential for the use of mononuclear cells from human umbilical cord blood in the treatment of amyotrophic lateral sclerosis in SOD1 mice. , 2000, Journal of medicine.

[302]  R. Ferrante,et al.  Sodium phenylbutyrate prolongs survival and regulates expression of anti‐apoptotic genes in transgenic amyotrophic lateral sclerosis mice , 2005, Journal of neurochemistry.

[303]  P. Andersen,et al.  Overloading of Stable and Exclusion of Unstable Human Superoxide Dismutase-1 Variants in Mitochondria of Murine Amyotrophic Lateral Sclerosis Models , 2006, The Journal of Neuroscience.

[304]  M. Cudkowicz,et al.  Administration of nitric oxide synthase inhibitors does not alter disease course of amyotrophic lateral sclerosis SOD1 mutant transgenic mice , 1999, Annals of neurology.

[305]  P. Seeburg,et al.  Late-onset motoneuron disease caused by a functionally modified AMPA receptor subunit. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[306]  D. Borchelt,et al.  Differential regulation of small heat shock proteins in transgenic mouse models of neurodegenerative diseases , 2008, Neurobiology of Aging.

[307]  A. Strasser,et al.  Deletion of the BH3-only protein puma protects motoneurons from ER stress-induced apoptosis and delays motoneuron loss in ALS mice , 2007, Proceedings of the National Academy of Sciences.

[308]  S. Salani,et al.  Fas small interfering RNA reduces motoneuron death in amyotrophic lateral sclerosis mice , 2007, Annals of neurology.

[309]  K. Millen,et al.  Proprioceptive Sensory Neuropathy in Mice with a Mutation in the Cytoplasmic Dynein Heavy Chain 1 Gene , 2007, The Journal of Neuroscience.

[310]  A. Rembach,et al.  Antisense peptide nucleic acid targeting GluR3 delays disease onset and progression in the SOD1 G93A mouse model of familial ALS , 2004, Journal of neuroscience research.

[311]  P. Sanberg,et al.  Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. , 2003, Journal of hematotherapy & stem cell research.

[312]  D. MacGrogan,et al.  A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis , 2006, BMC Neuroscience.

[313]  M. Gurney,et al.  Increased 3‐nitrotyrosine and oxidative damage in mice with a human copper/zinc superoxide dismutase mutation , 1997, Annals of neurology.

[314]  Liping Li,et al.  The roles of free radicals in amyotrophic lateral sclerosis: reactive oxygen species and elevated oxidation of protein, DNA, and membrane phospholipids , 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[315]  P. Andersen,et al.  Motor Neuron Disease in Mice Expressing the Wild Type-Like D90A Mutant Superoxide Dismutase-1 , 2006, Journal of neuropathology and experimental neurology.

[316]  S. Rafii,et al.  Matrix metalloproteinase-9 regulates TNF-α and FasL expression in neuronal, glial cells and its absence extends life in a transgenic mouse model of amyotrophic lateral sclerosis , 2007, Experimental Neurology.

[317]  C. Henderson,et al.  Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS , 2005, Nature Medicine.

[318]  M. Gurney,et al.  Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. , 1994, Science.

[319]  G. Rosoklija,et al.  Does increased superoxide dismutase activity really cause muscular dystrophy? , 1999, Annals of neurology.

[320]  M. Gurney,et al.  Relationship of oxygen radical‐induced lipid peroxidative damage to disease onset and progression in a transgenic model of familial ALS , 1998, Journal of neuroscience research.

[321]  W. Le,et al.  Neuroprotective Effects of (-)-Epigallocatechin-3-gallate in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis , 2006, Neurochemical Research.

[322]  C. Hayward,et al.  Homozygosity for Asn86Ser mutation in the CuZn-superoxide dismutase gene produces a severe clinical phenotype in a juvenile onset case of familial amyotrophic lateral sclerosis. , 1998, Journal of medical genetics.

[323]  M. Strong,et al.  Neuronal tissue-specific ribonucleoprotein complex formation on SOD1 mRNA: Alterations by ALS SOD1 mutations , 2006, Neurobiology of Disease.

[324]  D. Borchelt,et al.  Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[325]  M. Carson,et al.  ALS, SOD and peroxynitrite , 1993, Nature.

[326]  O. Andreassen,et al.  N‐acetyl‐L‐cysteine improves survival and preserves motor performance in an animal model of familial amyotrophic lateral sclerosis , 2000, Neuroreport.

[327]  P. Sham,et al.  Recessive amyotrophic lateral sclerosis families with the D90A SOD1 mutation share a common founder: evidence for a linked protective factor. , 1998, Human molecular genetics.

[328]  A. Desideri,et al.  Impaired copper binding by the H46R mutant of human Cu,Zn superoxide dismutase, involved in amyotrophic lateral sclerosis , 1994, FEBS letters.

[329]  G. Egan,et al.  Magnetic resonance imaging reveals neuronal degeneration in the brainstem of the superoxide dismutase 1 transgenic mouse model of amyotrophic lateral sclerosis. , 2004, The European journal of neuroscience.

[330]  S. Finklestein,et al.  Basic fibroblast growth factor does not prolong survival in a transgenic model of familial amyotrophic lateral sclerosis , 1999, Annals of neurology.

[331]  Junying Yuan,et al.  Dissociation between Neurodegeneration and Caspase-11-Mediated Activation of Caspase-1 and Caspase-3 in a Mouse Model of Amyotrophic Lateral Sclerosis , 2003, The Journal of Neuroscience.

[332]  J. Julien,et al.  Peripherin is not a contributing factor to motor neuron disease in a mouse model of amyotrophic lateral sclerosis caused by mutant superoxide dismutase , 2003, Neurobiology of Disease.

[333]  M. Fujimura,et al.  Exacerbation of delayed cell injury after transient global ischemia in mutant mice with CuZn superoxide dismutase deficiency. , 1999, Stroke.

[334]  N. Brouwer,et al.  Reduced p75NTR expression delays disease onset only in female mice of a transgenic model of familial amyotrophic lateral sclerosis. , 2003, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[335]  E. Gahtan,et al.  Reversible impairment of long‐term potentiation in transgenic Cu/Zn‐SOD mice , 1998, The European journal of neuroscience.

[336]  Y. Itoyama,et al.  Selective impairment of fast anterograde axonal transport in the peripheral nerves of asymptomatic transgenic mice with a G93A mutant SOD1 gene , 1999, Brain Research.

[337]  N. Lee,et al.  Effect of Neuroprotective Drugs on Gene Expression in G93A/SOD1 Mice , 2005, Annals of the New York Academy of Sciences.

[338]  A. Nesburn,et al.  SOD1: a candidate gene for keratoconus. , 2006, Investigative ophthalmology & visual science.

[339]  S. Lorenzl,et al.  The matrix metalloproteinases inhibitor Ro 28-2653 [correction of Ro 26-2853] extends survival in transgenic ALS mice. , 2006, Experimental neurology.

[340]  M. Salmona,et al.  Protein Nitration in a Mouse Model of Familial Amyotrophic Lateral Sclerosis , 2005, Journal of Biological Chemistry.

[341]  X. P. Liu,et al.  A specific inhibitor of janus kinase-3 increases survival in a transgenic mouse model of amyotrophic lateral sclerosis. , 2000, Biochemical and biophysical research communications.

[342]  J. Julien,et al.  Wild‐type superoxide dismutase acquires binding and toxic properties of ALS‐linked mutant forms through oxidation , 2007, Journal of neurochemistry.

[343]  J. Julien,et al.  Reduction of axonal caliber does not alleviate motor neuron disease caused by mutant superoxide dismutase 1. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[344]  L. Greensmith,et al.  Increasing cannabinoid levels by pharmacological and genetic manipulation delays disease progression in SOD1 mice , 2006, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[345]  C. Crosio,et al.  Familial ALS-superoxide dismutases associate with mitochondria and shift their redox potentials , 2006, Proceedings of the National Academy of Sciences.

[346]  M. Reinholz,et al.  Therapeutic Benefits of Putrescine-Modified Catalase in a Transgenic Mouse Model of Familial Amyotrophic Lateral Sclerosis , 1999, Experimental Neurology.

[347]  K. Nave,et al.  Reduced oxidative damage in ALS by high‐dose enteral melatonin treatment , 2006, Journal of pineal research.

[348]  K. Roemer,et al.  Motor neuron cell death in a mouse model of FALS is not mediated by the p53 cell survival regulator , 2000, Brain Research.

[349]  A. Ludolph,et al.  Targeted Antioxidative and Neuroprotective Properties of the Dopamine Agonist Pramipexole and Its Nondopaminergic Enantiomer SND919CL2x [(+)2-Amino-4,5,6,7-tetrahydro-6-lpropylamino-benzathiazole Dihydrochloride] , 2006, Journal of Pharmacology and Experimental Therapeutics.

[350]  P. Caroni,et al.  Accumulation of SOD1 Mutants in Postnatal Motoneurons Does Not Cause Motoneuron Pathology or Motoneuron Disease , 2002, The Journal of Neuroscience.

[351]  T. Sugawara,et al.  Overexpression of SOD1 in transgenic rats attenuates nuclear translocation of endonuclease G and apoptosis after spinal cord injury. , 2006, Journal of neurotrauma.

[352]  J. Valentine,et al.  Evidence for a Novel Role of Copper-Zinc Superoxide Dismutase in Zinc Metabolism* , 2001, The Journal of Biological Chemistry.

[353]  L. Greensmith,et al.  Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model , 2005, Nature Medicine.

[354]  M. Azari,et al.  Effects of intraperitoneal injection of Rofecoxib in a mouse model of ALS , 2005, European journal of neurology.

[355]  O. Andreassen,et al.  Effects of an Inhibitor of Poly(ADP-Ribose) Polymerase, Desmethylselegiline, Trientine, and Lipoic Acid in Transgenic ALS Mice , 2001, Experimental Neurology.

[356]  C. Tohyama,et al.  Reduction of metallothioneins promotes the disease expression of familial amyotrophic lateral sclerosis mice in a dose‐dependent manner , 2001, The European journal of neuroscience.

[357]  T. Möller,et al.  Cannabinol delays symptom onset in SOD1 (G93A) transgenic mice without affecting survival , 2005, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[358]  J. Rothstein Of mice and men: Reconciling preclinical ALS mouse studies and human clinical trials , 2003, Annals of neurology.

[359]  D. Borchelt,et al.  High Molecular Weight Complexes of Mutant Superoxide Dismutase 1: Age-Dependent and Tissue-Specific Accumulation , 2002, Neurobiology of Disease.

[360]  Y. Itoyama,et al.  Intrathecal Delivery of Hepatocyte Growth Factor From Amyotrophic Lateral Sclerosis Onset Suppresses Disease Progression in Rat Amyotrophic Lateral Sclerosis Model , 2007, Journal of neuropathology and experimental neurology.

[361]  J. Rothstein,et al.  Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS) , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[362]  M. Savasta,et al.  Benefit of tianeptine and morphine in a transgenic model of familial amyotrophic lateral sclerosis , 2006, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[363]  A. Rembach,et al.  Opposing effects of low and high‐dose clozapine on survival of transgenic amyotrophic lateral sclerosis mice , 2003, Journal of neuroscience research.

[364]  H. Blauw,et al.  CGP 3466B has no effect on disease course of (G93A) mSOD1 transgenic mice , 2004, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[365]  Jeffrey Rothstein,et al.  Mutant SOD1 causes motor neuron disease independent of copper chaperone–mediated copper loading , 2002, Nature Neuroscience.

[366]  K. Csiszȧr,et al.  Intrathecal cyclosporin prolongs survival of late-stage ALS mice , 2001, Brain Research.

[367]  Robert H. Brown,et al.  Rats Expressing Human Cytosolic Copper–Zinc Superoxide Dismutase Transgenes with Amyotrophic Lateral Sclerosis: Associated Mutations Develop Motor Neuron Disease , 2001, The Journal of Neuroscience.

[368]  N. M. Dung,et al.  Polymorphisms of the gene coding for copper/zinc superoxide dismutase (SOD1) in patients with Japanese encephalitis , 2006, Annals of tropical medicine and parasitology.

[369]  J. Veldink,et al.  Sexual differences in onset of disease and response to exercise in a transgenic model of ALS , 2003, Neuromuscular Disorders.

[370]  J. Robertson,et al.  Neuronal intermediate filaments and ALS: a new look at an old question. , 2006, Biochimica et biophysica acta.

[371]  W. Frontera,et al.  Therapeutic effects of clenbuterol in a murine model of amyotrophic lateral sclerosis , 2006, Neuroscience Letters.

[372]  Shin J. Oh,et al.  Mutant dynactin in motor neuron disease , 2003, Nature Genetics.

[373]  B. Schürmann,et al.  The Oral Antidiabetic Pioglitazone Protects from Neurodegeneration and Amyotrophic Lateral Sclerosis-Like Symptoms in Superoxide Dismutase-G93A Transgenic Mice , 2005, The Journal of Neuroscience.

[374]  S. Sakoda,et al.  Benefit of a combined treatment with trientine and ascorbate in familial amyotrophic lateral sclerosis model mice , 1999, Neuroscience Letters.

[375]  N. Ende,et al.  Human umbilical cord blood effect on sod mice (amyotrophic lateral sclerosis). , 2000, Life sciences.

[376]  D. Bredesen,et al.  Altered Reactivity of Superoxide Dismutase in Familial Amyotrophic Lateral Sclerosis , 1996, Science.

[377]  W. Robberecht,et al.  The AMPA receptor antagonist NBQX prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis , 2003, Neuroscience Letters.

[378]  M. Cudkowicz,et al.  Disease course unaltered by a single intracisternal injection of BMP‐7 in ALS mice , 2002, Muscle and Nerve.

[379]  Christoph Schmitz,et al.  Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS , 2005, Nature Neuroscience.

[380]  S. Przedborski,et al.  The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice , 2006, Proceedings of the National Academy of Sciences.

[381]  J. Glass,et al.  Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man , 2004, Experimental Neurology.

[382]  Ole Gredal,et al.  Toxicity of Familial ALS-Linked SOD1 Mutants from Selective Recruitment to Spinal Mitochondria , 2004, Neuron.

[383]  G. Pasinetti,et al.  A therapeutic role for cyclooxygenase‐2 inhibitors in a transgenic mouse model of amyotrophic lateral sclerosis , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[384]  S. Mignani,et al.  RPR 119990, a novel alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid antagonist: synthesis, pharmacological properties, and activity in an animal model of amyotrophic lateral sclerosis. , 2001, The Journal of pharmacology and experimental therapeutics.

[385]  M. Gurney,et al.  Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[386]  N. Siddique,et al.  Genetics of amyotrophic lateral sclerosis. , 2008, Physical medicine and rehabilitation clinics of North America.

[387]  V. Meininger,et al.  Guidelines for the preclinical in vivo evaluation of pharmacological active drugs for ALS/MND: Report on the 142nd ENMC international workshop , 2007, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[388]  J. Kong,et al.  Massive Mitochondrial Degeneration in Motor Neurons Triggers the Onset of Amyotrophic Lateral Sclerosis in Mice Expressing a Mutant SOD1 , 1998, The Journal of Neuroscience.

[389]  D. Thurman,et al.  How common are the “common” neurologic disorders? , 2007, Neurology.

[390]  Zuoshang Xu,et al.  Allele-specific RNAi selectively silences mutant SOD1 and achieves significant therapeutic benefit in vivo , 2006, Neurobiology of Disease.

[391]  John W Griffin,et al.  DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). , 2004, American journal of human genetics.

[392]  P. Andersen,et al.  Minute quantities of misfolded mutant superoxide dismutase-1 cause amyotrophic lateral sclerosis. , 2004, Brain : a journal of neurology.

[393]  J. Morrison,et al.  Genetically Decreased Spinal Cord Copper Concentration Prolongs Life in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis , 2004, The Journal of Neuroscience.

[394]  D. Gutmann,et al.  Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis , 2008, Nature Neuroscience.

[395]  A. Contestabile,et al.  Disease-related regressive alterations of forebrain cholinergic system in SOD1 mutant transgenic mice , 2005, Neurochemistry International.

[396]  G. Bishop,et al.  Increased expression of the glial glutamate transporter EAAT2 modulates excitotoxicity and delays the onset but not the outcome of ALS in mice. , 2003, Human molecular genetics.

[397]  S. Cheema,et al.  The serotonin precursor 5‐hydroxytryptophan delays neuromuscular disease in murine familial amyotrophic lateral sclerosis , 2003, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[398]  L. Martin,et al.  Adult Olfactory Bulb Neural Precursor Cell Grafts Provide Temporary Protection From Motor Neuron Degeneration, Improve Motor Function, and Extend Survival in Amyotrophic Lateral Sclerosis Mice , 2007, Journal of neuropathology and experimental neurology.

[399]  D. Borchelt,et al.  Mapping superoxide dismutase 1 domains of non‐native interaction: roles of intra‐ and intermolecular disulfide bonding in aggregation , 2006, Journal of neurochemistry.

[400]  M. Pericak-Vance,et al.  Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. , 1993, Science.

[401]  M. Beal,et al.  Integrative role of cPLA2 with COX‐2 and the effect of non‐steriodal anti‐inflammatory drugs in a transgenic mouse model of amyotrophic lateral sclerosis , 2005, Journal of neurochemistry.

[402]  V. Koliatsos,et al.  Human Neural Stem Cell Grafts Ameliorate Motor Neuron Disease in SOD-1 Transgenic Rats , 2006, Transplantation.

[403]  U. Krishnan,et al.  Novel Mutations that Enhance or Repress the Aggregation Potential of SOD1 , 2006, Molecular and Cellular Biochemistry.

[404]  M. Mattson,et al.  No benefit of dietary restriction on disease onset or progression in amyotrophic lateral sclerosis Cu/Zn-superoxide dismutase mutant mice , 1999, Brain Research.

[405]  R. Lewis,et al.  Increased survival and function of SOD1 mice after glial cell-derived neurotrophic factor gene therapy. , 2002, Human gene therapy.

[406]  Y. Itoyama,et al.  Mutant SOD1 linked to familial amyotrophic lateral sclerosis, but not wild-type SOD1, induces ER stress in COS7 cells and transgenic mice. , 2003, Biochemical and biophysical research communications.

[407]  J. Julien,et al.  Extra Axonal Neurofilaments Do Not Exacerbate Disease Caused by Mutant Cu,Zn Superoxide Dismutase , 2000, Neurobiology of Disease.

[408]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[409]  J. Rothstein,et al.  Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS , 2002, Annals of neurology.

[410]  M. Beal,et al.  Manganese porphyrin given at symptom onset markedly extends survival of ALS mice , 2005, Annals of neurology.

[411]  V. Meininger,et al.  A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. , 1994, The New England journal of medicine.

[412]  H. Paulson,et al.  Redox modifier genes in amyotrophic lateral sclerosis in mice. , 2007, The Journal of clinical investigation.

[413]  G. Sobue,et al.  In Vivo Gene Electroporation of Glial Cell Line-Derived Neurotrophic Factor (GDNF) into Skeletal Muscle of SOD1 Mutant Mice , 2001, Neurochemical Research.

[414]  C. Epstein,et al.  Overexpression of SOD1 in Transgenic Rats Protects Vulnerable Neurons Against Ischemic Damage After Global Cerebral Ischemia and Reperfusion , 1998, The Journal of Neuroscience.

[415]  J. Glass,et al.  The Wld S gene modestly prolongs survival in the SOD1G93A fALS mouse , 2005, Neurobiology of Disease.

[416]  須貝 文宣 Benefit of valproic acid in suppressing disease progression of ALS model mice , 2005 .

[417]  Kevin Eggan,et al.  Non–cell autonomous effect of glia on motor neurons in an embryonic stem cell–based ALS model , 2007, Nature Neuroscience.

[418]  E. Pioro,et al.  Lack of TDP-43 abnormalities in mutant SOD1 transgenic mice shows disparity with ALS , 2007, Neuroscience Letters.

[419]  M. Hellerstein,et al.  Stabilization of Hyperdynamic Microtubules Is Neuroprotective in Amyotrophic Lateral Sclerosis* , 2007, Journal of Biological Chemistry.

[420]  Yasushi Hiraoka,et al.  Mutations in Dynein Link Motor Neuron Degeneration to Defects in Retrograde Transport , 2003, Science.

[421]  C. Epstein,et al.  Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy. , 2006, Free radical biology & medicine.

[422]  T. Rando,et al.  The Modulation of Cellular Susceptibility to Oxidative Stress: Protective and Destructive Actions of Cu,Zn-Superoxide Dismutase , 2002, Neurobiology of Disease.

[423]  M. Tarnopolsky,et al.  Transient caloric restriction in early adulthood hastens disease endpoint in male, but not female, Cu/Zn‐SOD mutant G93A mice , 2006, Muscle & nerve.

[424]  Daniel Offen,et al.  Erythropoietin delays disease onset in an amyotrophic lateral sclerosis model , 2007, Experimental Neurology.

[425]  J S Beckman,et al.  Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. , 1999, Science.

[426]  Minh N. H. Nguyen,et al.  Wild-Type Nonneuronal Cells Extend Survival of SOD1 Mutant Motor Neurons in ALS Mice , 2003, Science.

[427]  J. Resch,et al.  Activation of the Nrf2–ARE pathway in muscle and spinal cord during ALS-like pathology in mice expressing mutant SOD1 , 2007, Experimental Neurology.

[428]  M. Salmona,et al.  Insoluble Mutant SOD1 Is Partly Oligoubiquitinated in Amyotrophic Lateral Sclerosis Mice* , 2006, Journal of Biological Chemistry.

[429]  Olivier Curet,et al.  Beneficial Effects of Lysine Acetylsalicylate, a Soluble Salt of Aspirin, on Motor Performance in a Transgenic Model of Amyotrophic Lateral Sclerosis , 1999, Experimental Neurology.

[430]  G. Rouleau,et al.  Compound heterozygous D90A and D96N SOD1 mutations in a recessive amyotrophic lateral sclerosis family , 2001, Annals of neurology.

[431]  C. Epstein,et al.  Reduction of CuZn-Superoxide Dismutase Activity Exacerbates Neuronal Cell Injury and Edema Formation after Transient Focal Cerebral Ischemia , 1997, The Journal of Neuroscience.

[432]  B. J. Turner,et al.  ER stress and UPR in familial amyotrophic lateral sclerosis. , 2006, Current molecular medicine.

[433]  C. Svendsen,et al.  GDNF delivery using human neural progenitor cells in a rat model of ALS. , 2005, Human gene therapy.